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ABSTRACT 

Background and Objectives: Primary Mitochondrial Myopathies (PMMs) encompass a group 

of genetic disorders that impair mitochondrial oxidative phosphorylation, adversely impacting 

physical function, exercise capacity, and quality of life (QoL). Current PMM standards-of-care 

address symptoms, with limited clinical impact, constituting a significant therapeutic unmet 

need. We present data from MMPOWER-3, a pivotal, phase-3, randomized, double-blind, 

placebo-controlled clinical trial that evaluated the efficacy and safety of elamipretide in 

participants with genetically-confirmed PMM. 

Methods: Following screening, eligible participants were randomized 1:1 to receive either 

24weeks of elamipretide 40mg/day or placebo subcutaneously. Primary efficacy endpoints 

included change from baseline to Week 24 on the distance walked on the 6-minute Walk Test 

(6MWT), and Total Fatigue on the Primary Mitochondrial Myopathy Symptom Assessment 

(PMMSA). Secondary endpoints included Most Bothersome Symptom Score on the PMMSA, 

NeuroQoL Fatigue Short Form scores, and the Patient– and Clinician–Global Impression of 

PMM Symptoms. 

Results: Participants (N=218) were randomized (n=109 elamipretide; n=109 placebo). Mean age 

was 45.6 year (64% women; 94% white). The majority of participants (n=162 [74%]) had 

mitochondrial DNA (mtDNA) mutations, with the remainder having nuclear DNA (nDNA) 



 

Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

defects. At screening, the most frequent bothersome PMM symptom on the PMMSA was 

tiredness during activities (28.9%). At baseline, mean distance walked on the 6MWT was 

336.7±81.2 meters, mean score for Total Fatigue on the PMMSA was 10.6±2.5, and mean T-

score for the Neuro-QoL Fatigue Short Form was 54.7±7.5. The study did not meet its primary 

endpoints assessing changes in the 6MWT and PMMSA Total Fatigue Score (TFS). Between the 

participants receiving elamipretide versus placebo, the difference in the Least Squares Mean 

(SE) from baseline to Week 24 on distance walked on the 6MWT was -3.2 (95% confidence 

interval,-18.7,12.3; p=0.69) meters and on the PMMSA Total Fatigue Score was -0.07 (95% 

confidence interval,-0.10,0.26; p=0.37). Elamipretide treatment was well-tolerated with most 

adverse events being mild to moderate in severity. 

Discussion: Subcutaneous elamipretide treatment did not improve outcomes in the 6MWT and 

PMMSA TFS in patients with PMM. However, this phase-3 study demonstrated that 

subcutaneous elamipretide is well-tolerated.  

 

Trial Registration Information: Trial registered with clinicaltrials.gov, Clinical Trials 

Identifier: NCT03323749; submitted on October 12, 2017; first patient enrolled October 9, 2017.  

https://clinicaltrials.gov/ct2/show/NCT03323749?term=elamipretide&draw=2&rank=9 

 

Classification of Evidence 

This study provides Class I evidence that elamipretide does not improve the 6 minute walk 

test  or fatigue at 24 weeks compared to placebo in patients with primary mitochondrial 

myopathy.  

. 

 

https://clinicaltrials.gov/ct2/show/NCT03323749?term=elamipretide&draw=2&rank=9
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Keywords: myopathy, primary mitochondrial disease, elamipretide, exercise intolerance, 
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INTRODUCTION 

A consensus of experts define Primary Mitochondrial Myopathies (PMMs), as a diverse group of 

genetically confirmed disorders of the mitochondria, affecting predominantly, but not 

exclusively, skeletal muscle, thereby adversely affecting physical function and quality of life 

[1,2]. The result is muscle weakness, muscle atrophy, limited exercise capacity, and symptoms of 

fatigue and pain [1,2]. PMM severity is variable but the progressive reduction in exercise 

capacity eventually impairs participants’ ability to perform activities of daily living [3-5]. 

Primary mitochondrial diseases (PMDs) caused by both mitochondrial (mtDNA) and nuclear 

DNA (nDNA) mutations, are among the most common inherited metabolic disorders [2]. PMDs 

have been reported to affect at least 1 in 4300 people in the general population [6], or an 

estimated 40,000 total individuals in the US [6]. Because most patients with PMDs are reported 

to suffer from PMM, the prevalence of PMM specifically is estimated to be slightly less than the 

overall prevalence of all PMDs (aside from patients with Leber hereditary optic neuropathy 

[LHON]) who do not experience a skeletal muscle component) [6,7].   

Currently, available standards of care primarily utilize dietary supplements that have limited 

clinical impact [8]. Therefore a significant unmet clinical need for new therapies exists [8]. 

However, there have been a number of historical challenges to the development of mitochondrial 

therapies, including the lack of a specific molecular target in mitochondria to promote ATP 

synthesis and a drug development process that is driven by disease-specific approaches [9]. 
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Elamipretide is an investigational mitochondrial-targeting agent in development for treating 

patients with a variety of mitochondrial diseases [10-13]. Elamipretide is a water-soluble, 

aromatic-cationic mitochondria-targeting tetrapeptide that readily penetrates and transiently 

localizes to the inner mitochondrial membrane where it associates with cardiolipin to improve 

membrane stability and restore supercomplex formation thereby enhancing ATP synthesis in 

several organs including the heart, kidney, neurons and skeletal muscle, and reduce reactive 

oxygen species (ROS) production [10,13-26]. High resolution respirometry studies in human and 

animal models of myopathy have demonstrated elamipretide-mediated improvement of 

respiration across various electron transport chain complexes [27,28].  These effects 

corresponded with significantly improved mitochondrial and cristae morphology [27], which are 

known to be altered across many mitochondrial myopathies [29]   

 

The elamipretide clinical development program included MMPOWER-1 and MMPOWER-2, 

whereby treatment with elamipretide demonstrated meaningful improvements in patient-reported 

outcomes (PROs) for patients with confirmed PMM [10,11]. MMPOWER-3 was a pivotal, phase 

3, randomized, double-blind, placebo-controlled clinical trial designed to evaluate the efficacy 

and safety of elamipretide 40mg subcutaneously (SC) once daily for 24 weeks as a treatment for 

PMM patients using the 6 minute walk test (6MWT) and fatigue questionnaires as outcome 

measures. MMPOWER-3 was designed to provide important baseline characteristics and data on 

how treatment may impact functional changes and PROs.  
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METHODS 

Study design and participants 

MMPOWER-3 was a 24-week, randomized, double-blind, parallel-group, placebo-controlled 

clinical trial for adults with PMM conducted at 27 clinical research centers in 7 countries 

(Canada, Denmark, England, Germany, Hungary, Italy, and US).  

 

MMPOWER-3 trial participants were primarily identified by the RePOWER registry, a global, 

prospective, non-interventional registryenrolling 413 ambulatory subjects 16-80 years of age 

with signs and/or symptoms of PMM [30]. Registry subjects provided demographic, 

genetic/phenotypic, functional, and clinical assessments, which were used to confirm genotypic-

phenotypic correlations and identify potential phase 3 trial participants prior to MMPOWER-3 

screening [30].  

 

Following screening (7 to 28 days), eligible participants were randomized in a 1:1 ratio to 

receive either 24-weeks of once-daily SC dosing of 40mg elamipretide or placebo. Study drug or 

placebo were self-administered subcutaneously by trained participants or their caregivers, at 

rotating sites around four quadrants of the abdomen or the thighs. Treatment began at the 

baseline visit with assessments at Weeks 4, 12, and 24. 

 

Eligible participants were ≥16 and ≤ 80 years of age (≥18 years in Germany), diagnosed with 

PMM with a confirmed mutation affecting mitochondrial function, and symptoms (i.e. exercise 

intolerance, fatigue, muscle weakness) and/or physical examination findings consistent with a 

myopathy as the predominant manifestations of their mitochondrial disease. In addition, 

participants had to be willing and able to provide consent and adhere to trial requirements for 
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inclusion. An acceptable form of birth control was required of participants of child-bearing 

potential during the study. 

 

Participants walking <100 meters or >450 meters during the 6MWT at screening/baseline were 

also excluded. Participants were not allowed to have had a recent (within 30 days) or planned 

hospitalization/procedure and were excluded if they had a clinically significant end-organ 

damage in the opinion of the investigator [30].  

 

Standard Protocol Approvals, Registrations, and Patient Consents 

MMPOWER-3 was conducted in accordance with international ethics guidelines, including the 

Declaration of Helsinki, Council for International Organizations of Medical Sciences 

International Ethical Guidelines, ICH GCP guidelines, and all applicable laws and regulations. 

The study was approved by institutional review boards, and all participants provided written 

informed consent. (clinicaltrials.gov, Clinical Trials Identifier: NCT03323749.) 

 

Randomization and Masking 

Assignment to treatment groups within each cohort for the randomized portion of the study was 

determined by a computer-generated random sequence using an Interactive Web-Response 

System to assign identical glass vials containing either the elamipretide or a placebo, which 

consisted of the same formulation without elamipretide. Participants were stratified by the 

subclassification of the specific mutation causing their PMM as determined by the adjudication 

committee formed to review and confirm eligibility for study enrollment [3]. The pharmacists, 

investigators and trial staff, sponsor, and participants were blinded to treatment.  
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Study Assessments and Procedures 

MMPOWER-3 was designed to assess the safety and efficacy of elamipretide through primary 

and secondary clinical study endpoints.  

 

Efficacy Assessments  

Co-primary endpoints evaluated the effect of elamipretide for 24 weeks including the distance 

walked (in meters) on the 6MWT, and the Total Fatigue score on the Primary Mitochondrial 

Myopathy Symptom Assessment (PMMSA) previously described in detail [31]. The full 

PMMSA assesses the severity of 10 of the most common symptoms of PMM using the following 

4-point scale (not at all [1] to severe [4]; described later). PMMSA Total Fatigue score (TFS) 

focuses on myopathic symptoms most commonly associated with PMM (severity of tiredness 

and muscle weakness at rest and during activities as described by participants).  

 

Most Bothersome Symptom Score on the PMMSA as well as the NeuroQoL Short Form Fatigue 

scores were secondary endpoints. The Neuro-QoL evaluates and monitors sensations ranging 

from tiredness to an overwhelming, debilitating, and sustained sense of exhaustion that decreases 

capacity for physical, functional, social, and mental activities, based on a 5-point scale (1=Never, 

2=Rarely, 3=Sometimes, 4=Often, and 5=Always).  

 

Other secondary endpoints included the Patient– and Clinician–Global Impression (PGI and 

CGI) of PMM Symptoms. PGI and CGI assess patient and clinician overall assessment of the 

severity of the patient’s symptoms related to PMM on a 5-point scaled question scored 0 to 4 

(0=None, 1=Mild, 2=Moderate, 3=Severe, 4=Very Severe) and changes to their symptoms on a 
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7-point scale scored -3 to 3 (-3=very much worse, -2=moderately worse, -1=a little worse, 0=no 

change, 1=a little better, 2=moderately better, 3=very much better). 

 

The PMMSA was performed during screening, baseline, and daily throughout the 24-week study 

period. Other efficacy endpoints were performed at screening, baseline, and at Weeks 4, 12, and 

24 of randomized treatment. 

 

Safety Assessments 

Safety and tolerability of elamipretide 40mg/d SC were assessed through recording of adverse 

events (AEs), ascertained via self-report, vital signs, physical exam, ECGs, and clinical 

laboratory evaluations. Adverse events were assessed for severity and relationship to study 

medication throughout the 24-week study. Safety measures were assessed during screening, 

baseline and weeks 4, 12, and 24.  

 

Statistical Analysis 

A sample size of 202 participants, with 101 participants in each treatment arm, was determined 

to provide 90% power to detect a 30-meter difference between treatment groups in the 6MWT 

and a 90% power to detect a one-unit difference in the PMMSA TFS. This was assuming 

standard deviations of 60 meters for 6MWT and 2 units for the PMMSA TFS, at an alpha-level 

of 0.025, as established from a previous study of elamipretide in patients with PMM [11]. The 2-

sided alpha-level of 0.025 was used to account for a possible multiplicity adjustment for the 

primary efficacy endpoints.  
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Efficacy was assessed in the intention to treat (ITT) population, defined as all participants who 

received at least one dose of investigational medication, and the per-protocol (PP) population, 

which included all ITT participants without defined protocol violations/deviations identified per 

blinded data review prior to database lock. These protocol violations/deviations included not 

meeting inclusion/exclusion criteria or having a selected major protocol deviation deemed to 

potentially impact efficacy findings; not completing the study; not receiving investigational 

treatment within two days prior to the Week 24 visit; having <80% compliance to investigational 

product; and not completing the study. Safety was assessed in the safety population, defined as 

all participants who received at least one dose of investigational medication.  

Primary and secondary efficacy outcomes were assessed as the change from baseline to each on-

treatment time point with the primary time point being end of treatment (Week 24). Analyses of 

continuous endpoints were conducted utilizing a mixed model repeated measures approach, with 

fixed effects for treatment, visit, the treatment-by-visit interaction, and participant as a random 

effect. The baseline value and a baseline-by-visit interaction for the endpoint were included as 

covariates. A family-wise alpha level of 0.05 was maintained for the primary endpoints, using 

Hochberg’s procedure at the primary time point of 24 weeks. If both primary endpoints were 

significantly different from placebo at the 0.05 (2-sided) level of significance in favor of 

elamipretide, then both endpoints were considered statistically significant. If not, the endpoint 

with the smaller p-value of the two was considered statistically significant if the p-value was 

≤0.025 (2-sided).  

In the event that both endpoints in the primary endpoint family were significant at the 5% level, 

then secondary endpoints were to be tested at Week-24 with Type I error control, achieved by 
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testing sequentially using a two-sided alpha level of 0.05. The endpoints and hierarchy of 

comparisons was: (1) change from baseline in Neuro-QoL Fatigue Short Form (T-score); (2) 

change from baseline in PGI of PMM Symptoms; (3) change from baseline in CGI of PMM 

Symptoms; (4) change from baseline in most bothersome symptom score on the PMMSA. 

Sequential comparisons to control Type I error were only to be completed if previous 

comparisons were statistically significant. For these analyses, p-values were nominal. 

Subgroup Analyses by PMM Genotype 

Given the extensive genetic heterogeneity of the study population, an exploratory analysis of 

genetic subgroups by genomic alteration (mtDNA and nDNA) was performed using the same 

methods as described for the primary efficacy endpoints above (ITT population using similar 

Mixed Model Repeated Measures [MMRM] models). 

As a result of a potential data entry error, which was later identified in post hoc data analysis, 

three participants were mis-classified in the clinical study report as having a pathogenic mtDNA 

variant. Post-hoc analyses revealed that these three participants instead had nDNA mutations, 

either in POLG (two participants) or TWNK (in one subject). Accordingly, these participants 

were moved from the mtDNA group into the nDNA cohort for the included genetic mutation 

analyses. 6MWT for one subject at week 24 was deemed unusable because the participant 

inadvertently received walking assistance, and was therefore not included in the 6MWT 

analyses.   

Study protocol and statistical analysis plan were published on ClinicalTrials.gov updated on 

January 24
th

 2022 (NCT03323749) [32]. 
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Pharmacokinetic Analysis 

The PK Population included 106 subjects randomized and treated with elamipretide, with at least 

one PK sample taken during their participation. PK modelling for elamipretide and its 

metabolites, M1 and M2, were performed using NONMEM computer software. Covariates, such 

as age, genotype, weight, height, lean body mass, body mass index, liver function tests, serum 

creatinine, and renal function (as described by estimated glomerular filtration rate [eGFR]) were 

analyzed. The exposure-response analysis examined response based on the 6MWT as a function 

of steady-state exposure to elamipretide and its metabolites. 

Role of the funding source 

The funding source for this study participated in the development of the study design. All authors 

participated in data collection, data interpretation, and the clinical study report writing. The 

manuscript lead author had full access to the totality of the study data. The remaining authors 

were provided with an aggregate data analysis. All authors had final responsibility for the 

decision to submit for publication. 

 

Data Availability 

Anonymized data not published within this article will be made available by request from any 

qualified investigator.   

 

Protocol and Statistical Analysis Plan 

The study protocol and statistical analysis plan were published
32

.  
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RESULTS 

Participants 

Of the 296 participants screened for eligibility in MMPOWER-3, 218 were enrolled  and 

randomized to treatment (elamipretide n=109; placebo n=109) between October 2017 and 

December 2019 (Figure 1). Of thosereceiving investigational product (n=218), 205  (94%) 

completed the double-blind period of the study, with a similar percentage of participants for each 

treatment group completing (n=102 [93.6%] elamipretide and n=103 [94.5%] placebo). Thirteen 

randomized participants (6.0%) discontinued treatment (main reason being participant decision; 

n=9 [4.1%]). Most participants (90.8%; n=198/218) were included in the PP patient population 

(n=96 [88.1%] for elamipretide and n=102 [93.6%] for placebo).   

 

Participant demographics at baseline were similar between treatment groups and characteristics 

demonstrated similar impairment in PMM (Table 1). Of the 218 treatment-randomized 

participants, the mean age was 44.9 years with participants mostly being white (94%; 

n=203/218) and female (64.2% n=140/218). Mean weight was 66.0 (+18.9) kg, height was 165.7 

(+10.4) cm, and BMI was 24.0 (+6.0). Among the participants that completed the 6MWT at 

baseline, the average distance walked was 330.28 (+76.5) meters. One participant had a protocol 

violation of walking >450 meters on the 6MWT at baseline. The mean PMMSA TFS was 10.6 

(±2.5). The Neuro-QoL Fatigue Short Form average T-score was 55.0 (±7.5) points. At 

screening, participants reported tiredness during activities (28.9%; n=63), muscle weakness 

during activities, (21.1%; n=46), balance problems (11.5%; n=25), and tiredness at rest (10.6%; 

n=23) on the PMMSA as the most bothersome symptom of the 10 symptoms of PMM, with 

bothersome symptoms varying slightly between treatment groups. (Table 2).  
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Baseline genetic test results showed a majority of participants (74%, n=162) had mtDNA 

mutations, with the remainder (26%, n=56) having nDNA defects (Table 3 and eFigure 1). 

Because participants were stratified by the subclassification of the genetic class, the distribution 

of genetic class between mtDNA and nDNA was similar between treatment groups. Three 

participants were mis-classified in the clinical study report (identified in a post-hoc analysis) as 

having a pathogenic mtDNA variant. Instead, these three participants had nDNA mutations 

(either in POLG [two participants] or TWNK [in one subject]). Accordingly, these participants 

were moved from the mtDNA group into the nDNA cohort for the genetic mutation analyses, 

resulting in 73% (n=159) with mtDNA mutations, and the remaining 27% (n=59) with nDNA 

defects.  

 

Efficacy 

Primary Endpoints of Overall ITT 

Analysis of the 6MWT at the end of treatment showed the Least Squares (LS) Mean (SE) of 

change from baseline in distance walked at Week 24 was 14.1 (+5.7) meters for participants 

receiving elamipretide and 17.3 (+5.7) meters for participants receiving placebo, a –3.2 meter 

difference between the two groups (95% confidence interval [CI], –18.7, 12.3; p= 0.69) (Figure 

2A). The per-protocol (PP) participant analysis demonstrated a –2.2 meter difference between 

the two groups (95% CI, –16.9, 12.5; p= 0.77).  

Elamipretide-treated participants reported more total fatigue at baseline and less total fatigue at 

end-of-treatment as assessed by the PMMSA TFS. The LS Mean (SE) of change from baseline to 

Week 24 on the PMMSA TFS was –1.13 (±0.22) for participants receiving elamipretide and –

1.05 (±0.22) for participants receiving placebo, a –0.07 difference between the two groups (95% 
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CI, –0.69, 0.54; p= 0.81) (Figure 2B). The PP participant analysis demonstrated a 0.09 

difference between the two groups (95% CI, –0.54, 0.72; p= 0.78).  

Secondary endpoint results are provided in eTable 1. Analyses of change from baseline in PGI 

of PMM Symptoms and CGI of PMM Symptoms at the end of treatment are provided in Figures 

2C and 2D, respectively.  

Analyses by Genetic Subgroup: mtDNA versus nDNA 

mtDNA: Subgroup analysis for participants with mtDNA mutations of the 6MWT at the end-of-

treatment showed the LS Mean (SE) of change from baseline in distance walked at Week 24 was 

14.0 (+6.1) meters for participants receiving elamipretide (n=74) and 25.0 (+6.1) meters for 

participants receiving placebo (n=79), an –11.0 meter between-group difference favoring placebo 

(95% CI, –28.1, 6.1; p= 0.21; Figure 3A).  

nDNA: For participants with nDNA mutations (post-hoc analysis), LS Mean (SE) change from 

baseline in distance walked at Week 24 was 25.5 (+8.0) for participants receiving elamipretide 

(n=29) and 0.3 (±7.7) meters for participants receiving placebo (n=29), a 25.2 meter difference 

between the two groups favoring elamipretide (95% CI, 3.1, 47.3; p= 0.03; Figure 3B).   

For participants with mtDNA mutations, the LS Mean (SE) of change from baseline at Week 24 

on the PMMSA TFS was –1.3 (+0.2424) for participants receiving elamipretide and –1.1 

(+0.2525) for participants receiving placebo, a –0.21 difference between the two groups (95% CI, 

–0.9, 0.5; p= 0.55). For participants with nDNA mutations (post-hoc analysis), LS Mean (SE) of 

change from baseline at Week 24 was –0.45 (+0.25) for participants receiving elamipretide and –

0.48 (+0.24) for participants receiving placebo, a 0.03 difference between the groups (p=0.93). 
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Safety 

In total, 109 participants received elamipretide and 109 received placebo. AEs during the 

treatment period were reported by a higher percentage of elamipretide participants (98.2% 

[n=107/109]) than placebo (76.1% [n=83/109]) (Table 4). Most AEs in the elamipretide group 

(97.2%) and half of AEs in the placebo group (51.4%) were reported as treatment-related AEs. 

Most AEs were mild or moderate in intensity. The most commonly reported AEs for participants 

receiving elamipretide (frequency >10%) were injection site reactions (see Table 4). Injection 

site reactions experienced with elamipretide included erythema, pruritus, pain, swelling, 

induration, bruising, hemorrhage, urticaria, and injection site nodules and masses. A low 

percentage of serious adverse events (SAEs) were reported for participants in the elamipretide 

(n=5/109 [4.6%]) and the placebo groups (n=3/109 [2.8%]) and were not deemed to be treatment 

related. The incidence of AEs leading to discontinuation was greater in the elamipretide group 

(n=8/109 [7.3%] and n=2/109 [1.8%] for placebo, respectively). No participants had an AE with 

an outcome of death or hospitalization. 

Pharmacokinetics 

Population pharmacokinetic models were fit successfully to three analytes, elamipretide and two 

metabolites, M1 and M2.  For elamipretide, systemic parameters scaled allometrically. No 

covariates influenced the systemic or absorption parameters. For M1 and M2, apparent clearance 

decreased with age and increased with renal function. No other covariates influenced the 

systemic parameters. In the exposure-response analysis, subjects with an nDNA mutation had an 

increase in the change and fractional change at Week 24 compared to the Day 1 (i.e., baseline) 

value for the 6MWT as a function of the elamipretide steady state area under the curve 

(p=0.0262 and p=0.0345, respectively). 



 

Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

Classification of Evidence 

This study provides Class I evidence that elamipretide does not improve the 6 minute walk 

test  or fatigue at 24 weeks compared to placebo in patients with primary mitochondrial 

myopathy. 

 

DISCUSSION 

We present the results of the first Phase 3 trial in PMM with elamipretide. Overall, participants 

that received elamipretide did not meet either primary or secondary endpoints. Specifically, there 

were no statistically significant changes between elamipretide and placebo in the 6MWT or the 

PMMSA Total Fatigue Score. MMPOWER-3 uncovered several findings, specifically the 

importance of considering pathogenic genotypes within the PMM population when evaluating 

the effect of investigational treatments. Among the most interesting findings of the trial, 

identified in a post-hoc analysis, was that PMM participants with nDNA defects performed 

significantly better on the 6MWT, whereas participants with mtDNA mutations did not differ 

from placebo. The insight from these subgroups are novel findings and are expected to contribute 

substantially to future PMM studies.    

 

Patient improvements in 6MWT and PMMSA Total Fatigue Scores from the current study 

showed a similar trend as those results obtained from the phase 1/2 (MMPOWER-1) and phase 2 

(MMPOWER-2) clinical trials of elamipretide in patients with PMM [10,11]. MMPOWER-1 

[10] informed the dose selection for the phase 2 and 3 studies while the results from the phase 2 

study, MMPOWER-2 [11], provided an efficacy signal and data to support the initiation of this 

phase 3 study. 
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While the current study did not meet either of its primary endpoints (changes in the 6MWT and 

PMMSA Total Fatigue Score), participants treated with elamipretide did report slightly less total 

fatigue (between-group difference was not statistically significant) at the end-of-treatment as 

assessed by the PMMSA Total Fatigue Score. Future studies are needed to elucidate whether the 

slight change in PMMSA Total fatigue score in treated and untreated participants is within the 

test variability range or a true measure of fatigue improvement not reaching statistical 

significance due to the mild-to-moderate impairment of participants at baseline and increased 

heterogeneity in participant selection. 

 

The response in 6MWT in the nDNA cohort, as a function of plasma Area under the Curve 

(AUC0-24) demonstrates a statistically significant correlation, which supports this subgroup 

finding and suggests that the therapeutic dose may not be optimized. It is possible that the 

exposure-response relationship may differ by genotype/phenotype. These findings warrant 

further investigation and clearly underscore the importance of considering genetic subtypes in 

mitochondrial myopathy and the drug mechanism of action. All of the genes responsible for 

mtDNA maintenance are expressed in the nuclear genome [33]. Mitochondrial proteins/enzymes 

that are synthesized from nDNA must be transported across the inner mitochondrial membrane, 

enriched with cardiolipin [34]. These metabolite and nucleotide transporters depend on 

cardiolipin for their assembly and activity [35,36], and cardiolipin is known to stabilize mtDNA 

packaging into nucleoids [37]. It is intriguing to speculate that elamipretide’s benefit in the 

nDNA cohort was caused by improved enzyme/metabolite transport into mitochondria, improved 

assembly and morphology of mitochondria, augmented mtDNA stability, reductions in ROS, or 

any combination thereof. Although these presumptions are supported by pre-clinical work where 
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elamipretide improved mitochondrial protein import and mitochondrial morphology [13,27,38], 

further investigation will advance our understanding of the 6MWT increase in the nDNA cohort.   

 

Although the patient population with PMM included in the MMPOWER-3 study was impaired 

on the 6MWT at baseline compared with literature-based healthy controls (655 [±91] meters) 

[33], the phase 3 population was only moderately impaired based on the average PMMSA 

fatigue score, and only slightly more impaired than the population norm on the Neuro-QoL 

Fatigue Short Form T-score (mean T-score ≥50 points at baseline). In these mildly to moderately 

impaired participants, elamipretide did not demonstrate statistically significant changes on the 

primary endpoints (6MWT and PMMSA TFS) from baseline to 24 weeks compared with 

placebo. Additional analyses involving functional and patient reported outcomes are necessary to 

assess the ability of elamipretide to affect positive changes in genetically defined subgroups of 

this patient population. 

 

In this phase-3 study, elamipretide was generally well tolerated. Most AEs were mild to 

moderate in severity, with the most commonly reported AEs including injection site reactions. 

This safety was similar to that observed in the MMPOWER-2 study [11], and the TAZPOWER 

study in patients with Barth Syndrome with no serious AEs or deaths [12]. 

Lessons Learned 

There are important lessons to be learned from the present clinical trial regarding trial design in 

PMD. The first is that a better understanding of the natural history of PMM will help in future 

studies. Although the RePOWER pretrial, non-interventional registry [30] did not facilitate the 
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ability to study effort-dependent endpoints, it did enhance the understanding of disease 

mechanisms and de-risk/homogenize disease group selection for trial participants according to 

the specific drug intended targets but not the effort dependent endpoints.   

The second lesson is that there is a clear need to further study meaningful endpoints in this 

patient population. Fatigue has been identified as the primary issue from which this patient 

population suffers, identifying a definitive focal point to be addressed in future therapeutic trials. 

Refining the sensitivity of the PMMSA fatigue scores in PMD and PMM further to capture 

signals is tantamount for future studies to address data gaps.  

The lack of available biomarkers for PMM also presented challenges. The variability of 

participants responses to the PMMSA-Total Fatigue score, which is susceptible to a placebo 

effect were all challenges that skewed the objectivity of the study endpoints. Further, the mild to 

moderate fatigue scores observed at baseline point to a lack of sensitivity of this endpoint. The 

identification of objective endpoints or biomarkers assessing PMM would be beneficial for 

future trial design since the availability of biomarkers helps to target subjects that are most likely 

to respond to treatment, providing the ability to verify target engagement which could allow the 

use of enrichment strategies and reduce reliance on effort-dependent endpoints. For example, 

altered plasma acylcarnitine levels have previously been seen in PMM patients [39], and 

elamipretide has been shown to reduce plasma acylcarnitines in other PMD [40], but the relation 

of this biomarker to clinically meaningful changes in daily life needs to be established.  

The third lesson is from the basket design from MMPOWER-3, which pooled both nDNA and 

mtDNA participants. The placebo effect on 6MWT was prominent in mtDNA participants in the 

pre-specified subgroup analysis, and given the size of this subgroup this drove the placebo effect 

observed in the trial. Conversely, there was not a discernable placebo response on 6MWT in 
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nDNA participants (depicted in Figure 3B) as identified in a post-hoc analysis. Based on these 

observations, it appears that the MMPOWER-3 basket trial design introduced insurmountable 

heterogeneity. It has been shown that substantial efficiencies are possible in basket trial design 

only if the investigational drug works in most or all baskets in the clinical study, with losses of 

power and statistical significance if the investigational drug only works in a single basket [41]. 

The basket trial design used in MMPOWER-3 introduced significant heterogeneity between 

participants with mtDNA and nDNA mutations, which was particularly apparent with 6MWT 

results seen in the pre-specified subgroup analysis by genetic abnormality. Therefore, it is 

doubtful that a separation in efficacy between active treatment and placebo would have been 

observed regardless of the length of the trial. This critical lesson advances our understanding of 

the various PMM genotypes, and highlights the need to critically consider particular genotypes in 

the design of future trials. 

 

CONCLUSIONS 

The MMPOWER clinical development program was the most advanced and complete in PMM 

and provided significant lessons regarding study design and patient enrollment parameters. 

MMPOWER-3 was the first trial that progressed into phase 3 to assess a therapy for participants 

with PMM. Although the primary endpoints were not met for the overall population, the 

observation of the improvement in the 6MWT in the nDNA subgroup is encouraging and 

hypothesis generating. Efforts are currently underway to confirm this positive benefit and these 

findings in a follow-up and targeted phase 3 trial in PMM participants with pathogenic nDNA 

variants.  
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Tables 

Table 1: Baseline Participants Demographics 

 

Elamipretide 

(n=109) 

Placebo 

(n=109) 

Age (years) 

     Mean (SD) 

     Median 

     Range 

45.5 (15.7) 

47  

16–75 

44.3 (14.3) 

46  

16–74 

Women, n (%) 67 (61.5) 73 (67.0) 

Race (n [%]) 
  

     White 103 (94.5) 100 (91.7) 

     Black/Africa American 1 (0.9) 0 

     Asian 2 (1.8) 5 (4.6) 

     American Indian/Alaska Native 1 (0.9) 0 

     Other/Multiple 

 
2 (1.8) 4 (3.7) 

Weight (kg) 

     Mean (SD) 

     Median 

     Range 

 

64.8 (20.3) 

62.5 

29.7–181.4 

 

67.2 (17.3) 

64.2 

31.4–123.3 

Height (cm) 

     Mean (SD) 

     Median 

     Range 

 

165.6 (10.7) 

165.0 

123.0–197.3 

 

165.7 (10.2) 

165.0 

137.5–192.8 

BMI (kg/m2) 

     Mean (SD) 

     Median 

     Range 

23.5 (6.1) 

22.2  

12.4–48.9 

24.4 (5.8) 

23.2 

11.7–45.9 

Distance in 6MWT (meters)
a
 

     Mean (SD) 

     Median 

     Range 

324.95 (79.1) 

343.33 

(112.07–480.00) 

 

335.65 (73.8) 

351.00  

(140.88–449.60) 

Total Fatigue Score in PMMSA
b 10.6 (2.5) 10.5 (2.5) 
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     Mean (SD) 

     Median 

     Range 

10.3 

4–16 

10.3 

5–16 

Neuro-QoL Fatigue – Short Form 

(Total T-Scores) 

     Mean (SD) 

     Median 

     Range 

 

55.0 (7.5) 

55.4 

36.5–74.1 

54.4 (7.5) 

56.6 

38.2–74.1 

PGI in PMM Symptoms  

     Mean (SD) 

     Median 

     Range 

2.1 (0.8) 

2 

0–4 

2.0 (0.8) 

2 

0–4 

CGI in PMM Symptoms 

     Mean (SD) 

     Median 

     Range 

1.9 (0.8) 

2 

0–4 

1.9 (0.8) 

2 

0–4 

Most Bothersome Symptom Score 

in PMMSA
b
 

     Mean (SD) 

     Median 

     Range 

2.99 (0.69) 

3.0 

1.0–4.0 

2.84 (0.69) 

3.0 

1.1–4.0 

 

a
n=108 for placebo group. 

b
n=107 for placebo group. 

6MWT=Six-minute Walk Test; BMI=body mass index; CGI=Clinician Global Impression; 

PGI=Patient Global Impression; PMM=primary mitochondrial myopathy; PMMSA=Primary 

Mitochondrial Myopathy Symptoms Assessment.  
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Table 2: Most Bothersome Symptom in PMMSA at Screening 

 

Elamipretide  

(n=109) 

n (%) 

Placebo 

(n=109) 

n (%) 

Tiredness at Rest 9 (8.3%) 14 (12.8%) 

Tiredness during Activities 37 (33.9%) 26 (23.9%) 

Muscle Weakness at Rest 4 (3.7%) 5 (4.6%) 

Muscle Weakness during 

Activities 
24 (22.0%) 22 (20.2%) 

Balance Problems 11 (10.1%) 14 (12.8%) 

Vision Problems 10 (9.2%) 7 (6.4%) 

Abdominal Discomfort 5 (4.6%) 2 (1.8%) 

Muscle Pain 7 (6.4%) 9 (8.3%) 

Numbness 1 (0.9%) 2 (1.8%) 

Headache 1 (0.9%) 8 (7.3%) 

PMMSA=Primary Mitochondrial Myopathy Symptoms Assessment   
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Table 3: Participants’ Genetic Classifications  

  Elamipretide 

(n=109) 

n (%) 

Placebo 

(n=109) 

n (%) 

All 

participants 

(N=218) 

n (%) 

mtDNA mutation 79 (72.5) 80 (73.4) 159 (72.9) 

Impaired mitochondrial protein synthesis 

in toto 

79 (72.5) 79 (72.5) 158 (72.5) 

Affect the subunits of the respiratory 

chain 

0 1 (0.9) 1 (0.5) 

nDNA mutation 30 (27.5) 29 (26.6) 59 (27.1) 

Genes encoding subunits or ancillary 

proteins of the respiratory chain 

3 (2.7) 4 (0.7) 7 (3.2) 

     Defects of mtDNA maintenance 27 (24.8) 25 (22.9) 52 (23.9) 

mtDNA=mitochondrial DNA; nDNA=nuclear DNA. 
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Table 4: Adverse Events for Participants in the Elamipretide and Placebo Groups 

 Elamipretide  

(n=109) 

n (%) 

Placebo 

(n=109) 

n (%) 

AE Category 

Any AE 107 (98.2) 83 (76.1) 

Any treatment-related AE 106 (97.2) 56 (51.4) 

Any SAE* 5 (4.6) 3 (2.8) 

Any treatment-related SAE 0 0 

Any AE leading to treatment 

discontinuation 

8 (7.3) 2 (1.8) 

Any AE leading to treatment 

interruption 

13 (11.9) 5 (4.6) 

Death 0 0 

AEs Reported by ≥5% of Participants in Either Treatment Group 

Injection site erythema  94 (86.2) 31 (28.4) 

Injection site pruritus  82 (75.2) 10 (9.2) 

Injection site pain  43 (39.4) 20 (18.3) 

Injection site swelling  42 (38.5) 7 (6.4) 

Injection site induration  31 (28.4) 6 (5.5) 

Injection site urticaria  14 (12.8) 0 

Injection site nodule  11 (10.1) 2 (1.8) 

Injection site bruising 9 (8.3) 18 (16.5) 

Injection site mass 9 (8.3) 2 (1.8) 

Injection site hemorrhage 7 (6.4) 10 (9.2) 

Injection site hematoma  0 7 (6.4) 

Headache 8 (7.3) 4 (3.7) 

Nasopharyngitis 8 (7.3) 2 (1.8) 

Eosinophil count increased 7 (6.4) 0 

Upper respiratory tract infection 7 (6.4) 7 (6.4) 

Dizziness 6 (5.5) 3 (2.8) 

Fall 6 (5.5) 3 (2.8) 



 

Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

Nausea 5 (4.6) 8 (7.3) 

Diarrhea 3 (2.8) 9 (8.3) 

*The only -treatment-related AEs leading to discontinuation were injection site related. 

AE=adverse event; SAE=serious adverse event.   
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Figures 

Figure 1: Participants Disposition 

296 participants were screened, and 218 participants were randomized to treatment. Two (2) 

participants in the elamipretide group and 1 patient in the placebo group had the treatment 

withdrawn due to adverse event prior to the study discontinuation. The ITT population included 

109 participants in the elamipretide group and 109 participants in the placebo group. The PP 

population included 102 participants in the elamipretide group and 103 participants in the 

placebo group. ITT=intention to treat; PP = per-protocol.  
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Figure 2: Endpoint Change from Baseline to End-of-Treatment (Week 24) in: Six-minute 

Walk Test (6MWT) (A),  in Primary Mitochondrial Myopathy Symptom Assessment Total 

Fatigue Score (PMMSA) (B), in Patient Global Impression of Primary Mitochondrial Myopathy 

Symptoms (PGI) (C), and in Clinician–Global Impression of Primary Mitochondrial Myopathy 

Symptoms (CGI) 

a
No baseline measurements for two participants in the placebo group.  
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Figure 3: Change from Baseline to End-of-Treatment (Week 24) in Six-minute Walk Test: 

Subgroup Analysis by Genetic Abnormality 

Subgroup analysis by genetic abnormality for change from baseline to end-of-treatment (Week 

24) in 6MWT for (A) participants with mtDNA mutation and (B) participants with nDNA 

mutation 
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