

The most widely read and highly cited peer-reviewed neurology journal The Official Journal of the American Academy of Neurology

Neurology Publish Ahead of Print DOI:10.1212/WNL.0000000000207175

Pearls & Oysters: Case of Atypical Peripheral Nerve Findings Following Paclitaxel for Breast Cancer

Author(s):

Taylor E. Portland, BA¹; Roy Strowd¹; Michael S. Cartwright, MD, MS¹

Corresponding Author:

Taylor E. Portland, tportlan@wakehealth.edu

Affiliation Information for All Authors: 1. Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, USA

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Equal Author Contribution:
Contributions:
Taylor E. Portland: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Roy Strowd: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Analysis or interpretation of data
Michael S. Cartwright: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Analysis or interpretation of data
Figure Count:
Table Count: 2
Search Terms: [300] Carpal tunnel syndrome, Case report, Chemotherapy-induced peripheral neuropathy, Nerve conduction studies, Nerve
ultrasound
Acknowledgment:

Study Funding:

The authors report no targeted funding

Disclosures:

R. E. Strowd serves as a consultant for Monteris Medical Inc; he receives an editorial stipend from the American Academy of Neurology, and has received research/grant support from the American Academy of Neurology, American Board of Psychiatry and Neurology, American Society for Clinical Oncology, Southeastern Brain Tumor Foundation, Jazz Pharmaceuticals, and International Association for Medical Science Educators. The other authors report no relevant disclosures.

Preprint DOI:

Received Date:

2022-09-30

Accepted Date:

2023-01-26

Handling Editor Statement:

Submitted and externally peer reviewed. The handling editor was Resident and Fellow Section Editor Whitley Aamodt, MD, MPH.

Abstract

Neuromuscular ultrasound (NMUS) is a valuable tool in establishing a diagnosis of carpal tunnel syndrome (CTS), and can be particularly helpful in patients with clinical CTS but normal nerve conduction studies (NCS). This case involves the uncommon presentation of enlarged median nerves on NMUS with normal NCS in a breast cancer patient who developed chemotherapy induced peripheral neuropathy (CIPN) and CTS following taxane treatment. This case demonstrates that CTS should not be excluded based on electrodiagnostic studies alone,

and comorbid CTS should be considered in patients receiving neurotoxic chemotherapy, even in the setting of normal NCS.

Pearls

- Nerve conduction studies (NCS) may be normal is some cases of carpal tunnel syndrome
 (CTS), though this is not common
- CTS can be confirmed in patients with enlarged median nerves at the wrist on neuromuscular ultrasound (NMUS)
- Comorbid CTS should be considered in patients receiving neurotoxic chemotherapy
 when symptoms do not fit chemotherapy-induced peripheral neuropathy (CIPN)
- CTS can be associated with chemotherapy, and this combination may be more common than the literature suggests

Oysters

• A diagnosis of CTS should not be excluded based on NCS alone; NMUS may be a valuable additive tool in establishing the diagnosis

Case

A 39-year-old woman was referred for evaluation of numbness and tingling in the bilateral hands. She had a history of chemotherapy-related paresthesia after receiving dosedense doxorubicin and cyclophosphamide and Taxol (paclitaxel) to treat stage IIB, BRCA2 positive, triple-negative breast cancer. She initially received four weekly doses of Taxol, but

transitioned to every three-week Abraxane (paclitaxel) due to development of presumed neuropathy in the bilateral feet. She completed seven cycles of Abraxane with continued symptoms in her feet and minimal new paresthesias in her hands.

Approximately a year after her initial symptoms, she reported worsening of the pain, numbness, and tingling in her bilateral hands. Her symptoms were consistent with Common Terminology Criteria for Adverse Events (CTCAE) Grade 2 peripheral sensory neuropathy and were symmetric and in the median nerve distribution. On physical exam, the patient had normal strength in both upper extremities. She had decreased sensation to light touch bilaterally in the first three digits. She had a positive Tinel's sign at her left wrist and 1+ reflexes in both upper extremities.

The patient had a normal HbA1c, vitamin B12, folate, TSH, FT4, and RPR. NCS of the right median and ulnar nerves, at skin temperature of 32 degrees Celsius, revealed normal amplitudes and velocities in the motor and sensory divisions (Table 1). Upper limb EMG was not included in her diagnostic workup, as her presentation did not involve proximal upper limb or neck symptoms and bilateral cervical radiculopathy was thought to be an unlikely cause of her symptoms. Transcarpal mixed studies were performed to evaluate for CTS and were normal bilaterally. However, NMUS revealed moderate bilateral enlargement of median nerve cross-sectional areas at the wrists and palms compared to the forearms (Table 2). Both nerves were hypoechoic, had slightly reduced mobility, and had normal vascularity. She declined interventional treatments and had some benefit from wrist splints and anti-inflammatory medications.

Discussion

CTS occurs secondary to a mononeuropathy of the median nerve at the wrist.^{1,2} CTS should be considered in patients reporting pain, paresthesia or weakness in the median nerve distribution. Diagnosis of CTS is important for making informed treatment decisions, as various treatments may offer symptom relief, including wrist braces, steroid injections, and surgical carpal tunnel release.³ CTS is likely underreported following chemotherapy, leading to worsened disability, lost productivity, and increased healthcare costs.^{1,2}

CIPN is a common complication of treatment with taxanes and other neurotoxic chemotherapy. CIPN can result in dose reductions, delays in treatment, reduced cancer survival, and functional disabilities. CIPN symptoms frequently start within months of initiating therapy and often persist for years after treatment. Taxanes cause sensory-predominant neuropathy that presents with paresthesias, numbness, or pain in the distal extremities. CTS has been documented with CIPN but is not a commonly described finding.

Electrodiagnostic testing, including nerve conduction studies (NCS), may be used to complement history and physical exam in evaluating patients with symptoms of CTS or CIPN. 4,5 NCS may also be used to assess severity and determine prognosis of a mononeuropathy. In CTS, expected NCS findings include decreased nerve conduction velocity across the carpal tunnel. The slowed conduction is reflective of damage to the myelin sheath from nerve compression in the carpal tunnel. In taxane CIPN, NCS often shows a reduction in amplitudes, consistent with an axonal process. Median nerve conduction velocities may also be slow across the carpal tunnel in CIPN, suggesting median mononeuropathies may be caused or worsened by taxane

exposure.⁷ In this case, the patient's median and ulnar nerves did not display electrodiagnostic evidence of CIPN, suggesting her CIPN symptoms were from small fiber involvement.

A small population of patients with clinical CTS symptoms will show normal NCS, as seen in this case. ^{1,2} In these patients, NMUS is a cost-effective and non-invasive option to assess for anatomical abnormalities in the median nerve and surrounding structures. ^{1,2} NMUS should be considered in all patients with clinical CTS but normal or atypical NCS findings, or when patients may have an underlying neuropathy, such as CIPN, with potential superimposed CTS. ⁸

In patients with CTS, NMUS evaluation should include measurement of the median nerve cross-sectional area at the site of maximal nerve enlargement within the carpal tunnel.⁸ The sensitivity of median nerve cross-sectional area for the diagnosis of CTS ranges from 65%-97% and specificity from 72.7%-98%.⁹ Additionally, the wrist-to-forearm ratio should be used to demonstrate enlargement of the nerve focally at the wrist.⁸ In CTS, NMUS of the median nerve may have a normal area at non-compressive sites, and this finding has been reported in CIPN as well.⁴ There is limited literature on NMUS in patients with CIPN, and median nerve enlargement may be more common in CIPN than expected.

Other uses of NMUS include assessing for complete transection of the transverse carpal ligament in failed carpal tunnel release surgery and evaluating for focal enlargement suggestive of superimposed mononeuropathies in individuals with severe polyneuropathy. While user dependence influences the accuracy and reproducibility of NMUS and variability exists across devices, scanning protocols, and reference ranges, these limitations are not unique to NMUS and must be considered with electrodiagnostic techniques as well.⁹

Nerve enlargement in the setting of normal NCS is not commonly reported with typical idiopathic CTS or CIPN. However, this combination of findings may be more common than the sparse literature would suggest, as NMUS is not frequently used to assess the median nerves in CIPN. While CTS is common, the pathophysiology is not completely understood. In particular, the sequence of changes, including nerve enlargement, nerve echogenicity and vascularity changes, and nerve conduction slowing, is not known. This case suggests that perhaps nerve enlargement occurs prior to changes in NCS, and this finding may be exacerbated by chemotherapy or unique to CTS associated with chemotherapy. Therefore, CTS cannot be excluded in patients with clinical symptoms and normal NCS, and the combination of findings from NCS and NMUS may be more informative than either modality alone. 8

CTS treatment in a patient with nerve enlargement on NMUS and normal NCS should be the same as in other settings. Treatment may begin with wrist splinting in patients with mild symptoms, and may progress to oral anti-inflammatories, steroid injection into the carpal tunnel, or surgical carpal tunnel release. In severe cases of CTS, initial treatment may be steroid injection or surgical release. Using NMUS to clarify the diagnosis of CTS is important for guiding treatment, as worsening symptoms could indicate the need for injections or surgery. The choice of treatment should be a shared decision-making process between the patient and treating physician.

Abbreviations

APB: Abductor pollicis brevis ADM: Abductor digiti minimi

CIPN: Chemotherapy-induced peripheral neuropathy

CSA: Cross-sectional area
CTS: Carpal tunnel syndrome
NCS: Nerve conduction studies

NMUS: Neuromuscular ultrasound

References

- 1. Aktürk S, Büyükavcı R, Ersoy Y. Median nerve ultrasound in carpal tunnel syndrome with normal electrodiagnostic tests. *Acta Neurol Belg.* 2020;120(1):43-47. doi:10.1007/s13760-018-0963-3
- 2. Aseem F, Williams JW, Walker FO, Cartwright MS. Neuromuscular ultrasound in patients with carpal tunnel syndrome and normal nerve conduction studies. *Muscle Nerve*. 2017;55(6):913-915. doi:10.1002/mus.25462
- 3. Rosario NB, De Jesus O. Electrodiagnostic Evaluation Of Carpal Tunnel Syndrome. In: *StatPearls*. StatPearls Publishing; 2022. Accessed July 7, 2022. http://www.ncbi.nlm.nih.gov/books/NBK562235/
- 4. Lycan TW, Hsu FC, Ahn CS, et al. Neuromuscular ultrasound for taxane peripheral neuropathy in breast cancer. *Muscle Nerve*. 2020;61(5):587-594. doi:10.1002/mus.26833
- 5. Wang YJ, Chan YN, Jheng YW, et al. Chemotherapy-induced peripheral neuropathy in newly diagnosed breast cancer survivors treated with taxane: a prospective longitudinal study. Support Care Cancer. 2021;29(6):2959-2971. doi:10.1007/s00520-020-05796-0
- 6. Ko E j., Jeon J y., Kim W, Hong J y., Yi Y g. Referred symptom from myofascial pain syndrome: One of the most important causes of sensory disturbance in breast cancer patients using taxanes. *Eur J Cancer Care (Engl)*. 2017;26(6):e12615. doi:10.1111/ecc.12615
- 7. Chen X, Stubblefield MD, Custodio CM, Hudis CA, Seidman AD, DeAngelis LM. Electrophysiological Features of Taxane-Induced Polyneuropathy in Patients With Breast Cancer. *J Clin Neurophysiol*. 2013;30(2):199-203. doi:10.1097/WNP.0b013e3182767d3b
- 8. Pelosi L, Arányi Z, Beekman R, et al. Expert consensus on the combined investigation of carpal tunnel syndrome with electrodiagnostic tests and neuromuscular ultrasound. *Clin Neurophysiol.* 2022;135:107-116. doi:10.1016/j.clinph.2021.12.012
- 9. Cartwright MS, Hobson-Webb LD, Boon AJ, et al. Evidence-based guideline: Neuromuscular ultrasound for the diagnosis of carpal tunnel syndrome. *Muscle Nerve*. 2012;46(2):287-293. doi:10.1002/mus.23389

Table 1. Motor, Sensory, and Transcarpal Mixed Nerve Conduction Studies

Study	Nerve	Site	Muscle	Latency, ms	Amplitude, μV	Velocity, m/s
Motor	R Median	Wrist	APB	2.9 (<4.4)	13 (>5.9)	-
		Elbow	APB	6.3 (<4.4)	13 (>5.9)	54 (>53)
	R Ulnar	Wrist	ADM	2.5 (<3.7)	12.1 (>7.9)	-
		B. Elbow	ADM	5.3 (<3.7)	12.2 (>7.9)	62 (>52)
		A. Elbow	ADM	7.0 (<3.7)	11.5 (>7.9)	58 (>52)
Study	Nerve	Site	Rec. Site	Peak Latency, ms	Amplitude, μV	Velocity, m/s
Sensory	R Median	Wrist	Digit II	3.3 (<3.3)	45 (>17)	56 (>42)
	R Ulnar	Wrist	Digit V	3.3 (<3.1)	38 (>14)	58 (>45)
Study	Nerve	Site	Rec. Site	Peak Latency, ms		
Transcarpal Mixed	R Median	Palm	Wrist	2.2		
	R Ulnar	Palm	Wrist	2.0		
	L Median	Palm	Wrist	2.1		
	L Ulnar	Palm	Wrist	2.1		

Findings are expressed as "result (reference value)". The reference values are from the Wake Forest Diagnostic Neurology Laboratory. For the Transcarpal Mixed studies, the normal peak latency difference is <0.4 ms for both the median and ulnar palms.

Table 2. Neuromuscular Ultrasound Findings of the Bilateral Median Nerve

Nerve	Location	Area	Mobility	Echogenicity	Vascularity
R. Median	Palm	17 mm ²			
	Distal wrist crease	13 mm ²	Slightly reduced	Hypoechoic	Normal
	Forearm	5 mm ²			
	Wrist-to-forearm ratio	2.6			
L. Median	Palm	11 mm ²			
	Distal wrist crease	11 mm ²	Slightly reduced	Hypoechoic	Normal
	Forearm	7 mm ²			
	Wrist-to-forearm ratio	1.6			

Normal NMUS values include median nerve cross-sectional area at the palm of <13.0 mm², at the wrist of <13.0 mm², at the forearm of <10.7 mm², and wrist-to-forearm ratio of <1.5. These reference values are from the Wake Forest Diagnostic Neurology Laboratory.

Pearls & Oysters: Case of Atypical Peripheral Nerve Findings Following Paclitaxel for Breast Cancer

Taylor E. Portland, Roy Strowd and Michael S. Cartwright Neurology published online March 6, 2023 DOI 10.1212/WNL.000000000207175

This information is current as of March 6, 2023

Updated Information & including high resolution figures, can be found at:

Services http://n.neurology.org/content/early/2023/03/06/WNL.0000000000207175.f

Subspecialty Collections This article, along with others on similar topics, appears in the following

collection(s):

Carpal tunnel syndrome

http://n.neurology.org/cgi/collection/carpal_tunnel_syndrome

Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in its

entirety can be found online at:

 $http://\dot{w}ww.neurology.org/about/about_the_journal\#permissions$

Reprints Information about ordering reprints can be found online:

http://n.neurology.org/subscribers/advertise

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2023 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.

