Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology Future Forecasting Series
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
    • UDDA Revision Series
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology Future Forecasting Series
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
    • UDDA Revision Series
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit Manuscript
    • Author Center
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Neurology Video Journal Club
  • Residents & Fellows

User menu

  • Subscribe
  • My Alerts
  • Log in

Search

  • Advanced search
Neurology
Home
The most widely read and highly cited peer-reviewed neurology journal
  • Subscribe
  • My Alerts
  • Log in
Site Logo
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Neurology Video Journal Club
  • Residents & Fellows

Share

October 03, 2023; 101 (14) Research Article

High-Throughput CSF Proteomics and Machine Learning to Identify Proteomic Signatures for Parkinson Disease Development and Progression

View ORCID ProfileKazuto Tsukita, Haruhi Sakamaki-Tsukita, Sergio Kaiser, Luqing Zhang, Mirko Messa, Pablo Serrano-Fernandez, Ryosuke Takahashi
First published August 16, 2023, DOI: https://doi.org/10.1212/WNL.0000000000207725
Kazuto Tsukita
From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kazuto Tsukita
Haruhi Sakamaki-Tsukita
From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sergio Kaiser
From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luqing Zhang
From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mirko Messa
From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pablo Serrano-Fernandez
From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryosuke Takahashi
From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Full PDF
Short Form
Citation
High-Throughput CSF Proteomics and Machine Learning to Identify Proteomic Signatures for Parkinson Disease Development and Progression
Kazuto Tsukita, Haruhi Sakamaki-Tsukita, Sergio Kaiser, Luqing Zhang, Mirko Messa, Pablo Serrano-Fernandez, Ryosuke Takahashi
Neurology Oct 2023, 101 (14) e1434-e1447; DOI: 10.1212/WNL.0000000000207725

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
171

Share

  • Article
  • Figures & Data
  • Info & Disclosures
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Abstract

Background and Objectives This study aimed to identify CSF proteomic signatures characteristic of Parkinson disease (PD) and evaluate their clinical utility.

Methods This observational study used data from the Parkinson's Progression Markers Initiative (PPMI), which enrolled patients with PD, healthy controls (HCs), and non-PD participants carrying GBA1, LRRK2, and/or SNCA pathogenic variants (genetic prodromals) at international sites. Study participants were chosen from PPMI enrollees based on the availability of aptamer-based CSF proteomic data, quantifying 4,071 proteins, and classified as patients with PD without GBA1, LRRK2, and/or SNCA pathogenic variants (nongenetic PD), HCs, patients with PD carrying the aforementioned pathogenic variants (genetic PD), or genetic prodromals. Differentially expressed protein (DEP) analysis and the least absolute shrinkage and selection operator (LASSO) were applied to the data from nongenetic PD and HCs. Signatures characteristics of nongenetic PD were quantified as a PD proteomic score (PD-ProS), validated internally and then externally using data of 1,556 CSF proteins from the LRRK2 Cohort Consortium (LCC). We further tested the PD-ProS in genetic PD and genetic prodromals and examined associations with clinical progression.

Results Data from 279 patients with nongenetic PD (mean ± SD, age 62.0 ± 9.6 years; male 67.7%) and 141 HCs (age 60.5 ± 11.9 years; male 64.5%) were used for PD-ProS derivation. From 23 DEPs, LASSO determined weights of 14 DEPs for the PD-ProS (area under the curve [AUC] 0.83, 95% CI 0.78–0.87), validated in an independent internal validation cohort of 71 patients with nongenetic PD and 35 HCs (AUC 0.81, 95% CI 0.73–0.90). In the LCC, only 5 of the 14 DEPs were also measured. Notably, these 5 DEPs still distinguished 34 patients with nongenetic PD from 31 HCs with the same weights (AUC 0.75, 95% CI 0.63–0.87). Furthermore, the PD-ProS distinguished 258 patients with genetic PD from 365 genetic prodromals. Finally, regardless of genetic status, the PD-ProS independently predicted both cognitive and motor decline in PD (dementia, adjusted hazard ratio in the highest quintile [aHR-Q5] 2.8 [95% CI 1.6–5.0]; Hoehn and Yahr stage IV, aHR-Q5 2.1 [95% CI 1.1–4.0]).

Discussion By integrating high-throughput proteomics with machine learning, we identified PD-associated CSF proteomic signatures crucial for PD development and progression.

Trial Registration Information ClinicalTrials.gov (NCT01176565). A link to the trial registry page is clinicaltrials.gov/ct2/show/NCT01141023.

Classification of Evidence This study provides Class II evidence that the CSF proteome contains clinically important information regarding the development and progression of Parkinson disease that can be deciphered by a combination of high-throughput proteomics and machine learning.

Glossary

aHR=
adjusted hazard ratio;
AUC=
area under the curve;
DEP=
differentially expressed protein;
HC=
healthy control;
HR=
hazard ratio;
H&Y=
Hoehn and Yahr;
LASSO=
least absolute shrinkage and selection operator;
LCC=
LRRK2 Cohort Consortium;
LEDD=
levodopa-equivalent daily dose;
MCI=
mild cognitive impairment;
MJFF=
Michael J. Fox Foundation;
MS=
mass spectrometry;
NPV=
negative predictive value;
PD=
Parkinson disease;
PD-ProS=
PD proteomic score;
PPMI=
Parkinson's Progression Markers Initiative;
PPV=
positive predictive value;
PRS=
polygenic risk score;
SOMAers=
slow off-rate modified aptamers

Footnotes

  • Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

  • The initial draft of this manuscript was previously accessible on medRxiv with the DOI: 10.1101/2022.06.08.22276035. The current version contains several important enhancements compared to that earlier medRxiv version. Firstly, we've standardized the values in our differential protein analysis and adopted a more stringent cutoff value, changing it from q < 0.2 to q < 0.05. Secondly, we've adjusted the ratio of our derivation and internal validation cohorts to be more balanced. Most importantly, we've expanded our validation process to include an “external” validation cohort from an entirely different study, the LRRK2 Cohort Consortium, which used a different method for measuring proteins, namely mass spectrometry-based proteomics. As a result, the current version of our findings is significantly more reliable in terms of external validity compared to the preliminary version on medRxiv. This is crucial for any future clinical applications.

  • Submitted and externally peer reviewed. The handling editor was Associate Editor Peter Hedera, MD, PhD.

  • Editorial, page 595

  • Class of Evidence: NPub.org/coe

  • Received January 8, 2023.
  • Accepted in final form May 30, 2023.
  • © 2023 American Academy of Neurology
View Full Text

AAN Members

We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.

Google Safari Microsoft Edge Firefox

Click here to login

AAN Non-Member Subscribers

Click here to login

Purchase access

For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)

Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here 

Purchase
Individual access to articles is available through the Add to Cart option on the article page.  Access for 1 day (from the computer you are currently using) is US$ 39.00.  Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means.  The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use.  Distributing copies (electronic or otherwise) of the article is not allowed.

Letters: Rapid online correspondence

No comments have been published for this article.
Comment

REQUIREMENTS

You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.

Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.

If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.

Submission specifications:

  • Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
  • Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
  • Submit only on articles published within 6 months of issue date.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Publishing Agreement Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • Abstract
    • Glossary
    • Introduction
    • Methods
    • Results
    • Discussion
    • Study Funding
    • Disclosure
    • Acknowledgment
    • Appendix Authors
    • Footnotes
    • References
  • Figures & Data
  • Info & Disclosures
Advertisement

White Matter Hyperintensity Trajectories in Patients With Progressive and Stable Mild Cognitive Impairment

Dr. David Beversdorf and Dr. Ryan Townley

► Watch

Related Articles

  • Advances in Diagnosis and Prognosis of Parkinson DiseaseValue of CSF Proteomics

Alert Me

  • Alert me when eletters are published
Neurology: 101 (18)

Articles

  • Ahead of Print
  • Current Issue
  • Past Issues
  • Popular Articles
  • Translations

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Activate a Subscription
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Education
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • AAN.com
  • AANnews
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology | Print ISSN:0028-3878
Online ISSN:1526-632X

© 2023 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise