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ABSTRACT 

Objective 

In medical imaging, a limited number of trained deep learning algorithms have been 

externally validated and released publicly. We hypothesized that a deep learning algorithm 

can be trained to identify and localize subarachnoid haemorrhage (SAH) on head computed 

tomography (CT) scans, and that the trained model performs satisfactorily when tested using 

external and real-world data. 

Methods 

We used non-contrast head CT images of patients admitted Helsinki University Hospital 

between 2012 and 2017. We manually segmented (i.e. delineated) SAH on 90 head CT scans, 

and used the segmented CT scans together with 22 negative (no SAH) control CT scans in 

training an open-source convolutional neural network (U-Net) to identify and localize SAH. 

We then tested the performance of the trained algorithm by using external datasets (137 SAH 

and 1242 control cases) collected in two foreign countries, and also by creating a dataset of 

consecutive emergency head CT scans (8 SAH and 511 control cases) performed during on 

call hours in 5 different domestic hospitals in September 2021. We assessed the algorithm’s 

capability to identify SAH by calculating patient- and slice-level performance metrics, such 

as sensitivity and specificity.  

Results 

In the external validation set of 1379 cases, the algorithm identified 136 out of 137 SAH 

cases correctly (sensitivity 99.3%, specificity 63.2%). Of the 49064 axial head CT slices, the 

algorithm identified and localized SAH in 1845 out of 2110 slices with SAH (sensitivity 

87.4%, specificity 95.3%). Of 519 consecutive emergency head CT scans imaged in 
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September 2021, the algorithm identified all 8 SAH cases correctly (sensitivity 100.0%, 

specificity 75.3%). The slice-level (27167 axial slices in total) sensitivity and specificity were 

87.3% and 98.8%, as the algorithm identified and localized SAH in 58 out of 77 slices with 

SAH. The performance of the algorithm can be tested on through a webservice. 

Conclusions 

We show that the shared algorithm identifies SAH cases with a high sensitivity, and that the 

slice-level specificity is high. In addition to openly sharing a high-performing deep learning 

algorithm, our work presents infrequently used approaches in designing, training, testing and 

reporting deep learning algorithms developed for medical imaging diagnostics. 

Classification of Evidence 

This study provides Class III evidence a deep learning algorithm correctly identifies the 

presence of subarachnoid hemorrhage on CT scan. 

 
 
 
INTRODUCTION 

The use of head CT imaging has continued to increase among adults during the 21st century1. 

Moreover, in keeping with the increasing trend in favouring health care system integrations 

and consolidations, many countries have centralised radiology services during on-call hours. 

This leads to significantly higher volumes and complexity of on-call imaging cases, which in 

turn place increasing pressure on on-call radiologists. In fact, the overall on-call workload for 

radiologists has quadrupled in the past 15 years2.  

Head computed tomography (CT) scans are among the most frequently requested after-hours 

imaging studies in hospitals. Head CT scans outside normal working hours are mostly 

requested by emergency departments, where findings in an urgent head CT scan can change 
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the patient’s medical care. Perhaps the two most common patient groups who are imaged 

with an urgent head CT scan are headache and stroke patients, for whom any delays in ruling 

out issues, like intracranial bleedings, may be tragic. Of the types of intracranial bleedings, 

undiagnosed subarachnoid haemorrhage (SAH) is among the most alarming ones, because if 

the frequent cause, i.e. a ruptured intracranial aneurysm, is left untreated, at least 75% of 

today’s SAH patients die within a year3. In middle-aged people, SAH deaths surpass the 

number of ischemic stroke deaths, and SAH deaths are in fact the most common type of 

stroke deaths in particularly middle-aged women4. 

Even though the rate of missed or misdiagnosed head CT findings is low especially at 

academic centres, misinterpretations do happen particularly during after-hours, which are 

often covered by somewhat less experienced clinicians. It has been found that after-hours 

head CT reports provided by radiology residents at an academic large centre were inaccurate 

in 4.6% of the cases5. Fortunately, however, only 0.62% of the cases that were not identified 

or were inaccurately reported were intracranial haemorrhages (one-third of these were 

SAHs)5. These facts considered, the primary research question being addressed in this study 

was as follows: can a deep learning algorithm correctly identify and localize the presence of 

SAH on head CT scans.  

 

METHODS 

 Head CT images for deep learning training. We extracted non-contrast head CT images 

from the Helsinki University Hospital (HUH) Picture Archiving and Communication 

Systems (PACS) archive. First, using the HUH electronic medical records, we identified 

[based on the 10th version of the International Classification of Disease (ICD-10) category 

code I60] SAH patients treated at HUH between 2012 and 2017 (Table 1). Similarly, we 
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created a negative control group (no SAH on a head CT scan) by searching for subjects who 

were admitted to the HUH emergency rooms between 2011 and 2018 (Table 1), imaged with 

a head CT scan, and discharged home on the same admission day with a discharge diagnosis 

of headache (ICD-10 codes R51 and G44.2). Since the head CT studies were performed with 

various multislice CT scanners, reconstructed slice thicknesses varied between 2 and 5 mm 

(Table 1). Similarly, the used imaging protocols varied by year, scanner and hospital. 

Secondly, of the tens of thousands of identified cases and controls, we extracted up to 1237 

non-contrast head CT studies of the identified SAH patients and 2353 control subjects from 

the PACS archive, which contains more than 21 million digitally stored Digital Imaging and 

Communications in Medicine (DICOM) imaging studies. The extracted DICOM image series 

of SAH patients consisted of axially reconstructed multiplanar reformatted volumes (MPR) 

imaged with four different CT scanners at HUH hospitals (Table 1). A similar image dataset 

of control subjects originated from five different CT scanners (Table 1). In 2021, the HUH 

had altogether 19 different CT scanners. Thirdly, after a slice-wise review of the extracted 

DICOM image series, two study authors (AT, MK) selected 98 MPR volumes corresponding 

to 96 SAH patients with one patient having two follow-up CT scans, and 985 MPR volumes 

corresponding to 949 control people with headache (no SAH detected on head CT scans), as 

18 people were imaged at least twice. Apart from SAH, no other inclusion criteria were 

applied [such as demographics, findings of medical interventions (e.g. aneurysm clips, 

aneurysm coils, ventricular catheters, etc.), image artefacts, image quality, image 

reconstruction methods, or image resolution] for the selected MPR volumes of SAH patients.  

Segmentation of SAH on head CT images. Figure 1 and our previous publication6 present 

the concepts of annotation and segmentation. In brief, using the open-source utility dcm2niix, 

we converted the selected DICOM images to the Neuroimaging Informatics Technology 

Initiative (NIfTI) open file format for further processing. A trained medical image analyst 
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(AT) performed a manual segmentation task (i.e. delineated SAH evident on head CT scans) 

using the open source software ITK-SNAP (e1) and 3D Slicer (e2). Following this, the study 

neurosurgeon (MK) reviewed and adjusted the segmentations for the training set, but not for 

a dataset segmented in order to assess a pixel-level algorithm performance. We carried out 

adjustments to the segmented data only when a mutual (AT, MK) agreement was achieved. 

These segmentations (i.e. ground truths) were drawn only onto the axial MPR planes, since 

the axial MRPs are also used in clinical diagnostics, and since the resolution of reconstructed 

coronal and sagittal MPRs was low and rarely informative.  

Pre-processing of training images. We down-sampled the 512x512 image resolution to 

256x256, which in other words downscaled the NiFTI image slices by a factor of 2 both in 

horizontal and vertical directions. In down-sampling, we kept the original slice numbers of 

every scan. We clipped the intensities of the head CT scans using the window range of [0, 

150] Hounsfield units. Following this, we divided the segmented and pre-processed NiFTI 

MPR volumes into training and test sets.  

Training of the deep learning algorithm. In training, we used an open-sourced and standard 

2-dimensional 5-level U-Net-type architecture7,8, in which each level consisted of two 

convolutional layers followed by max-pooling on the downscaling path and up-sampling on 

the upscaling sides. The number of feature maps per each level was 30, 60, 120, 240 and 480. 

Simplified, U-Net is a convolutional neural network that has been designed particularly for 

medical image segmentation. The U-Net architecture is based on fully convolutional layers, 

and therefore it may be trained with fewer images yet yielding accurate segmentations. In 

training, the network learns to classify pixels either positive or negative, based on segmented 

(i.e. every pixel including the lesion of interest outlined positive) training images. When the 

fed input image travels through each convolutional layer, so-called feature maps are 

generated by superimposing different filters (i.e. mathematical functions) on the input image, 
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and the output value of the filter function is called a feature map. The feature map size 

changes at each convolutional layer, and the network learns to identify lesion-specific image 

features. Following training, the network is fed with raw images (no segmentations), and the 

trained U-Net creates a segmentation mask (i.e. outlines identified lesions) as a visual output. 

We used the training set simply in training of the algorithm to segment SAH, whereas the 

small test dataset (8 head CT scans) was reserved for testing the trained model along the 

training process. Of the 98 head CT scans with SAH, we picked randomly 90 for training. Of 

these 90 MPR volumes with SAH, 23 were head CT scans taken on admission prior to any 

invasive treatments. The remaining 67 MPR volumes were postoperative, of which 40 

included aneurysm clips and clip-related artefacts, 22 included aneurysm coils and coil-

related artefacts, and 5 were volumes showing ventricular catheters. We used the remaining 8 

out of 98 MPR volumes of SAH patients as the small test dataset during training in order to 

continuously evaluate performance of the model. Of the negative (no SAH) control group of 

985 head CT scans, we used 22 for training.  

External validation. Table 2. For the external validation, we used two different datasets, 

namely Zurich and CQ500 datasets. These datasets were not used in any training or testing 

phases. We assessed the algorithm’s capability to identify SAH, and reported the results 

based on patient- and slice-level annotations. We calculated the patient- and slice-level9 

performance metrics of the Zurich dataset. Since the CQ500 dataset included only case-level 

(not slice-level) annotations, we calculated only patient-level metrics for the CQ500 dataset. 

Zurich external dataset. The co-authors from Zurich, Switzerland, selected and extracted 

head CT images of 100 consecutive SAH patients and 1000 consecutive control subjects 

(without SAH) from the PACS system of the University Hospital Zurich. In order to retrieve 

authentic real-world clinical data from another large hospital, we provided no other advice 

for the case and control selection process. Furthermore, we suggested no limitations apply for 
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the CT scanners, imaging parameters or imaging dates. We provided the co-authors with the 

trained algorithm, and the whole external validation process was conducted independently in 

Zurich. DICOM files were converted to the NiFTI files using the dcm2niix software. Pre-

processing was carried out with the scripts provided by the HUH research team, and these 

operations were run on an offline machine (Windows 10, AMD 1950X 32-Thread, 64 GB 

RAM, GTX 980 Ti). The algorithm’s segmentations were visually checked using ITK-SNAP, 

and two raters (MV, VS) calculated the slice-level and patient-level performance metrics. 

Open source external dataset CQ500. A subset of open source dataset CQ5009 and its 

patient-level annotations from three raters as a ground truth was used as the third external 

dataset for validation. We rated the head CTs of patients as SAH cases when all three raters 

had annotated accordingly. Similarly, the head CT scan was considered negative (a control) if 

none of three rates found an intracranial bleeding in the scan. The final set consisted of 37 

head CT scans with SAH and 242 head CT scans with no intracranial bleedings.  

Simulated real-world validation. Since the external validation set from Zurich originated 

from a large neurosurgery unit of a tertiary university hospital, which provides emergency 

care mostly for unconscious patients and patients already diagnosed with emergence lesions 

on head CT scans, we collected all consecutive emergency head CT scans imaged in 

September 2021 in five HUH hospitals, which have no neurosurgical services. These five 

hospitals and their case-mix may therefore better resemble smaller on-call hospitals with 

head CT imaging facilities but no neurosurgical services. All collected CT scans were 

anonymized (no radiological reports available), and annotated (slice-level) followingly for 

SAH by three co-authors (MK, HP, AT). Similar to the CQ500 dataset, an agreement of all 

three raters was considered as a ground truth. After annotation, we analyzed all head CT 

scans using the algorithm. 
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Pixel-level accuracy. Since neither the external validation datasets nor the real-world 

validation dataset were segmented, i.e. they did not include pixel-level information about the 

true positives and negatives, one co-author (AT) segmented additional 49 SAH cases as 

described earlier to test the model’s pixel-level performance. The co-author (AT) randomly 

selected 46 SAH out of 1237 non-contrast head CT studies of the identified SAH patients 

(eTable 1), and included additional three SAH cases in which the diagnosis of SAH was 

originally missed, despite of positive head CT imaging findings.10 After segmentation, we 

analyzed all head CT scans using the algorithm. 

Post-processing of segmentations. As a sensitivity analysis, we applied simple post-

processing steps to the patient-level segmentations in order to reduce the number of false 

positive cases. For the Zurich dataset, we visually thresholded the number of cases where 

only one slice with a single pixel cluster was segmented positive. This single cluster in only 

one positive slice was considered negative (no SAH detected). For the CQ500 and HUH 

September 2021 datasets, we computed a Python script to evaluate the thresholding similarly, 

i.e. if the case had only one slice with one segmented SAH cluster, the case was considered 

negative.  

Statistical analyses. Patient-level metrics for the CQ500 and patient-, slice- and pixel-level 

metrics for the HUH datasets were calculated automatically using Python scripts computed 

for these tasks. These metrics include sensitivity, specificity, false positive rate, false 

negative rate, and accuracy. We performed all statistical analyses with the Python package 

numpy, and generated statistical plots with matplotlib.  

Ethical considerations. The local institutional review board of HUH approved the 

retrospective data collection and study design, and granted a waiver for acquiring an 

informed consent (HUS/365/2017; HUS/163/2019; HUS/190/2021). According to Finnish 

legislation, no separate ethics committee approval is needed for retrospective studies that 
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involve a secondary use of registry or archive data. We gathered all imaging data for 

algorithm training from the HUH, which consists of 23 separate hospitals and has a 

catchment area of approximately 2.2 million inhabitants. All five Finnish university hospitals, 

including the HUH, are publicly funded non-profit organizations that provide tertiary health 

care services for all people living in Finland, regardless of socioeconomic status, insurance 

status, or race/ethnicity. Therefore, we believe that the HUH imaging data for algorithm 

training is not inherently biased or deliberately discriminative. We conducted the study in 

line with the Declaration of Helsinki11.  

In Switzerland, the study was approved by the Zurich Cantonal Ethics Board (KEK Nr. 2020-

02725) and the Data Governance Board of the University Hospital Zurich (Nr. DUP-66). 

Data availability. Finnish healthcare data for secondary use can be obtained through 

FINDATA (Social and Health Data Permit Authority according to the Secondary Data Act). 

The used Finnish and Swiss healthcare data cannot be shared openly. Access to the CQ500 

image set can be obtained through a website (e3). In order to share the algorithm code with 

others, we uploaded the code to the GitHub repository (e4). For the sake of reliability and 

transparency, we launched a website (e5), where anyone can test the algorithm performance 

by uploading head CT scans for analysis. 

 

RESULTS 

External validation. The external validation dataset consisted of 1379 head CT scans (137 

SAH cases) (Table 2). Few head CT scans from the external validation set were imaged with 

the same CT scanner (GE Discovery CT750 HD) that was used in imaging the training 

dataset (Table 1 and 2). The confusion matrices show the patient-level (Table 3) and slice-

level (Table 4) results. Figure 2 shows four examples of how the algorithm identified and 
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localized (i.e. segmented) SAH. The overall patient-level sensitivity and specificity were 0.99 

and 0.63 for SAH, respectively (Table 3). The 1379 head CT scans were composed of 49064 

reconstructed axial slices, of which 2110 included SAH (Table 4). The slice-level sensitivity 

and specificity were 0.87 and 0.95, respectively (Table 4).  

The algorithm incorrectly classified one (0.7%) out of 137 SAH cases as negative (Table 3, 

eFigure 1). At the slice-level, the false negative misclassification rate was 12.6% (Table 4). 

In terms of false positives, results of the external validation showed a false positive rate of 

36.8% at the patient level (Table 3). Some of the false positive cases were other abnormal 

findings than SAH. For example, of the 34 false positive cases in the CQ500 dataset, the 

algorithm falsely segmented one tumor, one artefact, 8 cases with calcifications and 23 cases 

with no abnormal findings. Similarly, of the 423 false positive cases in the Zurich dataset, 

138 (32.6%) were postoperative hematomas/hemostatic sealants, 54 (12.8%) ischemic 

lesions, 23 (5.4%) chronic subdural hematomas, and 21 (5.0%) tumors. At the slice-level, the 

false positive rate was 4.7% (Table 4). 

Simulated real-world validation. Of the 519 consecutive emergency head CT scans imaged 

during on-call hours in September 2021 in five smaller HUH hospitals without neurosurgical 

services, the algorithm identified all 8 SAH cases (Table 5). All CT scanners in the five 

smaller hospitals were newer and differed from those used in imaging the training dataset. 

The patient-level sensitivity and specificity were 1.00 and 0.87, respectively (Table 5). The 

slice-level sensitivity and specificity were 0.75 and 0.99, respectively (Table 5). At the slice-

level, the false positive rate was 1.2% (Table 5). Patient- and slice-level IRRs for 519 

consecutive head CT scans were high (eTable 2). 

Pixel-level accuracy. Since neither the external validation dataset nor the simulated real-

world validation dataset included segmented images, we segmented and analyzed additional 

49 SAH cases to test the model’s pixel-level performance (eTable 1). The slice-level 
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sensitivity and specificity were 0.78 and 0.97, respectively (eTable 3). At the slice-level, the 

false positive rate was 3.3% (eTable 3). The pixel-level sensitivity and specificity were 0.53 

and >0.99, respectively (eTable 3). The pixel-level false positive rate was <0.01%. 

Anecdotally, the algorithm also identified three SAH cases that were originally misdiagnosed 

in real life (eFigure 2). The CT scanners used in imaging the 49 SAH cases (eTable 1) were 

mostly the same as the scanners used in imaging the training set (Table 1). 

Online validation portal. We launched a website (e5), where anyone can test the accuracy 

of the SAH algorithm by uploading (drag and drop) non-contrast head CT scans for analysis. 

Axial MPR reconstructions should be converted (with any open source DICOM-to-NiFTI 

converter) to the NiFTI format prior to uploading in order to fully anonymize the image data. 

The website is deployed and the analysis of one head CT scan with 30-40 axial MPR slices 

takes around 30 seconds. The segmentation results are presented in color for visual 

inspection. The website is open for 180 days following online publication.  

Classification of Evidence. This study provides Class III evidence a deep learning algorithm 

correctly identifies the presence of subarachnoid hemorrhage on CT scan. 

 

DISCUSSION 

The presented deep learning algorithm identified SAH correctly in 136 (99.3%) out of 137 

cases that were imaged with 7 different CT scanners in two countries (India and Switzerland). 

The only missed SAH was part of the CQ500 dataset (eFigure 1). In terms of specificity, the 

algorithm incorrectly segmented SAH in 457 (36.8%) out of 1242 controls. The slice-level 

false positive rate was 2200 (4.7%) per 46954 axial reconstructed head CT slices. A standard 

reconstructed head CT scan that is used in clinical diagnostics contains usually 30-40 axial 

MPR slices. If this algorithm was used in a clinical setting, the algorithm would falsely alarm 

clinicians about SAH in around every third normal (i.e. no SAH) head CT scan, and in these 
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cases, 1-2 incorrectly segmented slices should be carefully inspected to revise the diagnosis. 

When designing algorithms for life-threatening emergency conditions, the sensitivity should 

optimally be close to 100% (i.e. no missed cases,), even though 100% sensitivity is a 

challenging goal even for human eyes. If such an algorithm also has a non-zero false positive 

rate (less than 100% specificity), this obliges clinicians to inspect every positive case (also 

true positive cases). This may ensure that the algorithm is not replacing clinicians or 

radiologists, but acts in real-life medical practice more like a collaborative colleague. 

Trained imaging algorithms are frequently based on a high number of images. This same 

applies to algorithms for intracranial haemorrhages, which are often trained with a high 

number of annotated images12. Our approach of using a small number of real-word training 

images with pixel-level segmentations instead of slice-level annotations may encourage 

others to adopt a similar strategy in training deep learning algorithms. When training images 

are segmented, large image datasets are less often needed, and deep learning projects become 

possible also in smaller medical centres. In addition to high-quality training, a validation 

process is of paramount importance. Although the sensitivity and specificity of internally 

validated imaging algorithms for SAH can be very high, their performance metrics when 

tested with external clinical data are often compromised12. Since prior studies reporting deep 

learning algorithms that localize and identify SAH on head CT scans are scarce, any 

comparison between our and previous studies is difficult. In a seminal study on which the 

CQ500 dataset is based and made available for the public, the highest patient-level sensitivity 

and specificity for identifying (not localizing) SAH were 92% and 90%, respectively9. 

Another deep learning solution, the results of which were validated using an external dataset 

of a reasonable (>100 positive cases) size, patient-level results showed sensitivity and 

specificity of 85% and 97%, respectively13. In a large external validation study of the world's 

first and most widely used commercial deep learning solution [which can only interpret thin 
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0.5-1 mm axial CT images of modern (>64 slices) CT scanners] for identifying intracranial 

haemorrhages, the patient-level sensitivity for identifying SAH was 93%14. Apparently, many 

previous algorithms have probably been optimized not only for sensitivity but also for 

specificity, at the expense of sensitivity. In order to avoid a deep learning model surpassing 

clinicians, our approach was to reach a very high sensitivity and a lower specificity, in which 

case a clinician-deep learning model collaboration may become more likely. Interestingly, 

56% of false positives in our Zurich dataset were in fact other pathological lesions, such as 

postoperative hematomas. Indeed, the accuracy and particularly the false positive rate of the 

algorithm can vary depending on “natural confounders” (other blood-containing pathological 

lesions) and intended use (e.g. not intended to be used in postoperative imaging).  

One of the study strengths may be that the training dataset included preoperative as well as 

postoperative artefacts and distortions. The training dataset was imaged using different CT 

scanners, thus perhaps improving the generalisability of the algorithm. Moreover, since the 

external validation was conducted by using international datasets, and since the simulated 

real-world validation dataset consisted of all consecutive head CT scans imaged in September 

2021 in five different hospitals with five recently purchased modern CT scanners (none of 

which were used in imaging any other head CT scans in this study), these results may be 

generalizable. In addition, benchmarking to our results is feasible with the open-sourced 

CQ500 dataset. It is generally recommended to use not only open-sourced deep learning tools 

but also open-sourced datasets when available. We used open source tools for segmentations, 

file conversions and algorithm development. Despite having no influence on the selection 

process of images in India and Switzerland, these datasets may still somehow represent 

optimal cases for our algorithm, and therefore the results can be an overestimate. Since 

reproducing results based on machine learning algorithms is practically impossible by other 

researches and hospitals, we also launched a website (e5), where anyone can test the 
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performance of the algorithm by uploading head CT images in a NiFTI format (i.e. fully 

anonymized data) for validation. Moreover, many deep learning algorithms are incapable of 

illustrating, visualizing and delineating abnormal imaging findings, whereas the presented 

algorithm highlights SAH. This visualization may ease and fasten the image interpretation.15 

As a further matter, the used U-Net architecture is small and can therefore be deployed on 

computers and devices with little computing power. Finally, we shared the algorithm for 

research purposes and further development in GitHub (e4). Maybe even low-income 

countries can benefit from this solution. 

The training dataset consisted of Finnish people. Since Finns are genetically considered an 

independent subpopulation of the European population16, our algorithm may be biased. 

Particularly the false positive rate varied between datasets. Whether this depends on the race, 

remains to be studied. In addition, we lack a Conformité Européenne (CE) mark for the 

algorithm, which belongs to high risk classes (IIa, IIb, and III) of medical devices. Such 

accredited assessment and issuing the CE mark are expensive and time-consuming processes, 

and many university hospitals have little capability to productize medical devices. Moreover, 

since only one dataset was segmented (i.e. every pixel with SAH was delineated), and this 

dataset came from Finnish hospitals, we were able to calculate pixel-level performance 

metrics only for this dataset (eTable 3). Since a ground truth segmentation for SAH on head 

CT scans is a rather impractical measure (i.e. it is challenging for experts to agree about true 

positives and negatives at the pixel level), pixel-level results are clinically less meaningful 

and seldomly, if ever, reported. However, the pixel-level results were satisfactory (eTable 3), 

and false positive segmentations consisted of small clusters of incorrectly segmented pixels 

(results not shown). Inspecting small clusters of false positive pixels (the pixel-level false 

positive rate <0.01%) in a few slices (the slice-level false positive rate 4.7%) per head CT 

volume (the patient-level false positive rate 36.8%) puts unlikely a strain on radiologists or 
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clinicians. However, depending on the intended use, the number of false positive pixels could 

be decreased with simple postprocessing steps (e.g. by ignoring dispersed small pixel 

clusters) and further development. Finally, we did not test the algorithm prospectively in any 

emergency room setting. This is an unfortunate but most common shortcoming in developing 

medical imaging algorithms, as implementing a research algorithm in a hospital PACS 

system and clinical workflow is legally and technically a cumbersome process, which in 

addition to financial resources may require close collaboration with the PACS solution 

provider. However, the simulated real-world validation dataset with all consecutive cases 

from five hospitals resembled a prospective study setup in this context. On the other hand, the 

patient-level balance between positive and negative findings varies significantly between 

every hospital and institution, and therefore even our real-world sensitivity and specificity 

figures may be imperfectly generalizable. 

In conclusion, a similarly trained simple SAH algorithm could serve as a useful tool to assist 

the diagnosis of SAH in a clinical setting. Since the presented algorithm lacks the CE mark, 

the algorithm cannot yet be used for a clinical purpose.  
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TABLES 

 

Table 1 The training and control datasets used in the algorithm development. Of the 98 

head CT scans with SAH, 90 were randomly picked for training and the remaining 8 were 

used to continuously evaluate the performance of the deep learning model during training. Of 

the 985 control head CT scans, 22 and 963 were used for training and testing (during 

training), respectively. The HUH hospital organisation has 23 hospitals, and head CT scans 

were performed in different hospitals of the same hospital organisation.   

 SAH Controls 
SAH cases 

● Women (%) 
● Men (%) 
● Other (%) 
● Not available 

98 
68 (69.4) 
30 (30.6) 
0 (0.0) 
0 (0.0) 

985 
525 (53.3) 
438 (44.5) 

5 (0.5) 
17 (1.7) 

Number of axial slices 
● SAH 
● No SAH 

1681 
3555 

34994 

Slice thickness in mm, mean (SD) 4.2 (0.7) 4.0 (0.3) 
Slices per case, mean (SD) 36 (8) 36 (7) 
Age in years, mean (SD) 56.7 (12.9) 47.6 (15.6) 
SAH cases per scanners 

● Siemens Somatom Definition Edge 
● Siemens Somatom Definition AS+ 
● Siemens Somatom Definition Flash 
● GE Lightspeed VCT 
● GE Discovery CT750 HD 
● Not available 

98 
1 
8 
0 
84 
5 
0 

985 
279 
478 
45 
14 
152 
17 
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Table 2 The external validation datasets. The five most common imaging diagnoses are 

presented. Apart from the listed diagnoses, head CT imaging studies were performed for 

people with for example epileptic seizures, headaches and acute neurological deficits. The 

dataset also included postoperative images with artefacts. n/a = data not available, NPH = 

normal pressure hydrocephalus.  

 Zurich SAH Zurich controls  CQ500 SAH CQ500 controls 

Cases 
● Women (%) 

100 
62 (62.0) 

1000 
442 (44.2) 

37 
n/a 

242 
n/a 

Number of axial slices 2110 46954 1327# 11720# 

Age in years, mean (SD) 55.2 (13.4) 60.0 (18.8) n/a n/a 

Axial slices, mean (SD) 44.3 (6.7) 44.6 (15.2) 35.9 (9.3) 48.4 (55.9)† 

Diagnoses (%) 
● Aneurysmal SAH 
● Traumatic brain injury 
● CSDH* 
● Hydrocephalus (NPH) 
● Various tumors 

 
100 (100) 

0 (0) 
0 (0) 
0 (0) 
0 (0) 

 
0 (0) 

232 (23.2) 
67 (6.7) 
62 (6.2) 
36 (3.6) 

n/a n/a 

CT scanners ● Siemens Somatom Definition 
Flash  

● GE BrightSpeed 
● GE Discovery CT750 HD 
● GE LightSpeed 
● GE Optima CT600 
● Philips MX 16-slice 
● Philips Access-32 CT 

*CSDH = chronic subdural hematoma 

#slices were not annotated 

†numerous CQ500 head CTs were thin-slice scans without reconstructions 
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Table 3 Patient-level results of the external validation. CI = confidence interval. 

 Zurich 
SAH 

Zurich 
controls  

CQ500 
SAH 

CQ500 
controls 

SAH 
cases in 

total 

Controls in 
total 

Cases 100 1000 37 242 137 1242 

Predicted SAH 100 423 36 34 136 457 

Sensitivity (95% CIs) 1.00 (0.96-1.00) 0.97 (0.86-1.00) 0.99 (0.96-1.00) 

Specificity (95% CIs) 0.58 (0.55-0.61) 0.86 (0.81-0.90) 0.63 (0.60-0.66) 

False positive rate (95% CIs) 0.42 (0.39-0.45) 0.14 (0.10-0.19) 0.37 (0.34-0.40) 

False negative rate (95% CIs) 0.00 (0.00-0.04) 0.03 (0.00-0.14) 0.01 (0.00-0.04) 

Accuracy (95% CIs) 0.62 (0.59-0.64) 0.87 (0.83-0.91) 0.67 (0.64-0.69) 

CT scanners ● Siemens 
Somatom 
Definition 
Flash  

● GE 
BrightSpeed 

● GE Discovery 
CT750 HD 

● GE LightSpeed 
● GE Optima 

CT600 
● Philips MX 16-

slice 
● Philips Access-

32 CT 

● Siemens Somatom 
Definition Flash  

● GE BrightSpeed 
● GE Discovery CT750 

HD 
● GE LightSpeed 
● GE Optima CT600 
● Philips MX 16-slice 
● Philips Access-32 CT 

 

 

 
 
 
Table 4 Head CT slice-level results of the external validation. The CQ500 dataset from 

India did not have slice-level annotations. Therefore, the dataset was not included in slice-

level analyses. CI = confidence interval. 

 Zurich SAH Zurich controls  
Slices 2110 46954 
Predicted SAH 1845 2200 
Sensitivity (95 % CIs) 0.87 (0.86-0.89) 
Specificity (95% CIs) 0.95 (0.95-0.96) 
False positive rate (95% CIs) 0.05 (0.04-0.05) 

False negative rate (95% CIs) 0.13 (0.11-0.14) 

Accuracy (95% CIs) 0.95 (0.95-0.95) 

CT scanners ● Siemens Somatom Definition Flash  
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Table 5 Patient- and slice-level results of all 519 emergency head CT scans performed 

during on call hours in September 2021 in 5 out of 23 hospitals of the study hospital 

organization (HUH). All 8 SAH cases were traumatic, and all CT scanners were different 

(as in Table 1) than those used in imaging the training dataset of the model. n/a = not 

applicable, CI = confidence interval. 

 
SAH No SAH  

Slices with 
SAH 

Slices without 
SAH 

Number 
• Women (%) 

8 
3 (37.5) 

511 
280 (54.8) 

77 
n/a 

27090 
n/a 

Age in years, mean (SD) 76.0 (8.9) 67.6 (20.3) n/a n/a 
Predicted SAH 8 65 58 329 
Sensitivity (95% CIs) 1.00 (0.68-1.00) 0.75 (0.65-0.84) 
Specificity (95% CIs) 0.87 (0.84-0.90) 0.99 (0.99-0.99) 
False positive rate (95% CIs) 0.13 (0.10-0.16) 0.01 (0.01-0.01) 

False negative rate (95% CIs) 0.00 (0.00-0.32) 0.25 (0.16-0.35) 

Accuracy (95% CIs) 0.87 (0.84-0.90) 0.99 (0.99-0.99) 

CT scanners ● Siemens Somatom X.cite 
● Siemens Somatom go.Top 
● Toshiba Aquilion Prime 80 
● Canon Aquilion Prime 80 
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FIGURE LEGENDS 
 

Figure 1 Basic concepts of image annotations and segmentations illustrated. In the 

patient-level annotation, the whole head CT scan (MPR volume) is classified either positive 

or negative for SAH (a). In slice-level annotations, each of the approximately 30-40 axial 

slices of the head CT scan (MPR volume) is classified either as positive or negative (b). In a 

pixel-level segmentation, the aim is to delineate every positive pixel in every single slice (c). 

Segmentation of SAH is a time-consuming and laborious procedure, and therefore medical 

images are mostly annotated (not segmented).  
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Figure 2 Examples of segmentation results (A) with the trained deep learning algorithm. 

The overall sensitivity of the algorithm was considered satisfactory, and it identified and 

localized SAH on axial head CT slices with extensive SAH (upper left image), sulcal SAH 

(upper right image), streaking clip artefacts (lower left image), and distortions (lower right 

image). The same images are presented in the panel B without segmentations.  
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