Development of a Gait Feature–Based Model for Classifying Cognitive Disorders Using a Single Wearable Inertial Sensor
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Background and Objectives Gait changes are potential markers of cognitive disorders (CDs). We developed a model for classifying older adults with CD from those with normal cognition using gait speed and variability captured from a wearable inertial sensor and compared its diagnostic performance for CD with that of the model using the Mini-Mental State Examination (MMSE).
Methods We enrolled community-dwelling older adults with normal gait from the Korean Longitudinal Study on Cognitive Aging and Dementia and measured their gait features using a wearable inertial sensor placed at the center of body mass while they walked on a 14-m long walkway thrice at comfortable paces. We randomly split our entire dataset into the development (80%) and validation (20%) datasets. We developed a model for classifying CD using logistic regression analysis from the development dataset and validated it in the validation dataset. In both datasets, we compared the diagnostic performance of the model with that using the MMSE. We estimated optimal cutoff score of our model using receiver operator characteristic analysis.
Results In total, 595 participants were enrolled, of which 101 of them experienced CD. Our model included both gait speed and temporal gait variability and exhibited good diagnostic performance for classifying CD from normal cognition in both the development (area under the receiver operator characteristic curve [AUC] = 0.788, 95% CI 0.748–0.823, p < 0.001) and validation datasets (AUC = 0.811, 95% CI 0.729–0.877, p < 0.001). Our model showed comparable diagnostic performance for CD with that of the model using the MMSE in both the development (difference in AUC = 0.026, standard error [SE] = 0.043, z statistic = 0.610, p = 0.542) and validation datasets (difference in AUC = 0.070, SE = 0.073, z statistic = 0.956, p = 0.330). The optimal cutoff score of the gait-based model was >−1.56.
Discussion Our gait-based model using a wearable inertial sensor may be a promising diagnostic marker of CD in older adults.
Classification of Evidence This study provides Class III evidence that gait analysis can accurately distinguish older adults with CDs from healthy controls.
Glossary
- AD=
- Alzheimer disease;
- AUC=
- area under the curve;
- CD=
- cognitive disorder;
- CERAD=
- Consortium to Establish a Registry for Alzheimer Disease;
- CN=
- cognitively normal;
- CoM=
- center of body mass;
- CoV=
- coefficient of variance;
- DLB=
- dementia with Lewy bodies;
- KLOSCAD=
- Korean Longitudinal Study on Cognitive Aging and Dementia;
- MCI=
- mild cognitive impairment;
- MMSE=
- Mini-Mental State Examination;
- PD=
- Parkinson disease;
- SE=
- standard error;
- VaD=
- vascular dementia
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Submitted and externally peer reviewed. The handling editor was Associate Editor Peter Hedera, MD, PhD.
Editorial, page 10
Class of Evidence: NPub.org/coe
- Received August 25, 2022.
- Accepted in final form March 17, 2023.
- © 2023 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Long-term Safety and Efficacy of Avalglucosidase Alfa in Patients With Late-Onset Pompe Disease
Dr. Marianne de Visser and Dr. Maudy Theunissen