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Abstract
Background and Objectives
Alzheimer disease (AD) is highly heterogeneous, with marked individual differences in clinical
presentation and neurobiology. To explore this, we used neuroanatomical normative modeling
to index regional patterns of variability in cortical thickness. We aimed to characterize individual
differences and outliers in cortical thickness in patients with AD, people with mild cognitive
impairment (MCI), and controls. Furthermore, we assessed the relationships between cortical
thickness heterogeneity and cognitive function, β-amyloid, phosphorylated-tau, and ApoE
genotype. Finally, we examined whether cortical thickness heterogeneity was predictive of
conversion from MCI to AD.

Methods
Cortical thickness measurements across 148 brain regions were obtained from T1-weighted
MRI scans from 62 sites of the Alzheimer’s Disease Neuroimaging Initiative. AD was de-
termined by clinical and neuropsychological examination with no comorbidities present. Par-
ticipants with MCI had reported memory complaints, and controls were cognitively normal. A
neuroanatomical normative model indexed cortical thickness distributions using a separate
healthy reference data set (n = 33,072), which used hierarchical Bayesian regression to predict
cortical thickness per region using age and sex, while adjusting for site noise. Z-scores per region
were calculated, resulting in a Z-score brain map per participant. Regions with Z-scores <−1.96
were classified as outliers.

Results
Patients with AD (n = 206) had a median of 12 outlier regions (out of a possible 148), with the
highest proportion of outliers (47%) in the parahippocampal gyrus. For 62 regions, over 90% of
these patients had cortical thicknesses within the normal range. Patients with AD had more
outlier regions than people with MCI (n = 662) or controls (n = 159) (F(2, 1,022) = 95.39, p =
2.0 × 10−16). They were also more dissimilar to each other than people with MCI or controls
(F(2, 1,024) = 209.42, p = 2.2 × 10−16). A greater number of outlier regions were associated
with worse cognitive function, CSF protein concentrations, and an increased risk of converting
from MCI to AD within 3 years (hazard ratio 1.028, 95% CI 1.016–1.039, p = 1.8 × 10−16).

Discussion
Individualized normative maps of cortical thickness highlight the heterogeneous effect of AD
on the brain. Regional outlier estimates have the potential to be a marker of disease and could be
used to track an individual’s disease progression or treatment response in clinical trials.
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Alzheimer disease (AD) is the commonest cause of dementia,
being characterized by a progressive deterioration in cognitive
functioning and independence.1 The AD spectrum comprises
substantial clinical and biological differences between patients
recognized in clinical and research criteria.2 These differences
include variations in genetic basis,3 symptom profile, age at
onset, trajectory and severity,4,5 biomarker readouts (e.g.,
CSF β-amyloid [Aβ] levels),6 comorbidities,7 and in atrophy
patterns.8 Despite this, conventional statistical analyses focus
on group averages. This fundamental statistical assumption
posits that AD will affect different patients in similar ways,9

characterizing the average patient. To reach the goal of pre-
cision medicine for AD, we need to look beyond the average
and design statistical approaches that reflect patient hetero-
geneity at the individual level.

Neuroimaging has revealed that differences in brain structure
are very common in patients with AD.10 Neuroimaging
methods are the gold standard of understanding the in vivo
brain11; specifically, structural imaging has been described as
the imaging workhorse of neurodegeneration, being com-
monly recommended in AD diagnostic guidelines.12With this
in mind, large structural neuroimaging data sets are in-
creasingly available for dementia, such as Alzheimer’s Disease
Neuroimaging Initiative (ADNI), Open Access Series of
Imaging Studies (OASIS), and National Alzheimer’s Co-
ordinating Center and in the general population (e.g., UK
Biobank [UKB] and the Human Connectome Project).
These data sets provide the ability to chart variation across
cohorts and facilitate individual prediction.

Furthermore, large neuroimaging data sets have supported
the development and application of data-driven methods in
AD research. This has revealed that differences in brain
structure are very common in patients.8,13 Moreover, they
have enabled the estimation of disease subtypes from neu-
roimaging data, as a way to disentangle heterogeneity by
grouping patients by distinctive neurobiological and cognitive
characteristics8,10,13,14 and disease progression.15 Such sub-
types have the potential to stratify patient groups for clinical
decision making, such as regarding treatment strategy, ser-
vices and therapies tailored to clinico-radiologic phenotype,
and/or trial enrollment.16,17

Nevertheless, there are challenges associated with the clinical
translation of neuroimaging-derived subtypes.10 These include
the validity of subtypes, how distinct subtypes are from each
other, and how stable subtypes are over the disease course.13,18

Moreover, by design, clustering assumes homogeneity within
each cluster, clouding the individual-level variation present,
therefore limiting the representation of heterogeneity in the
sample.19 For instance, individual-level variation is seen in
atypical, nonamnestic AD (who comprise up to a third of
young-onset AD), which results in challenges to diagnosis and
appropriate care.17 Arguably, assessing the neurobiology of AD
at the individual patient level will provide a precise un-
derstanding of their disease, likely outcomes and facilitate tai-
lored treatment strategies. However, although this concept of
patient-centered, individualized precision medicine for AD is
well established, current research efforts are limited.

Neuroanatomical normative modeling is an emerging tech-
nique that captures individual-level variability in the brain.
This can provide individual statistical inferences with respect
to an expected normative distribution or trajectory over time.
Specifically, this was by modeling the relationship between
neurobiological variables (e.g., neuroimaging features) and
covariates (e.g., demographic variables such as age and sex) to
map centiles of variation across a cohort (i.e., Z-scores). An
individual can then be located within the normative distri-
bution to establish to what extent they deviate from the
expected pattern in each measure, and a map can be generated
of where and to what extent an individual’s brain differs
from the norm.20,21 This technique has shown to be suitable
for precise mapping of individual patterns of variation in brain
structure across multiple psychiatric and neurodevelopmental
disorders.20,22-24 Such findings motivate the first application
of neuroanatomical normative modeling to AD.2

Here, we examine individual patterns of variation in brain
structure in patients with AD using neuroanatomical nor-
mative modeling. Using the well-characterized, multisite,
ADNI data set, we applied a recent implementation of the
normative modeling framework, hierarchical Bayesian re-
gression. This technique has been shown to efficiently ac-
commodate intersite variation and provides computational
scaling, which is useful when using large studies, or combining
smaller studies together, that are acquired across multiple sites
in a federated learning framework.25-27 Our main objective
was to quantify spatial patterns of neuroanatomical hetero-
geneity using cortical thickness measures in patients with AD,
people with mild cognitive impairment (MCI), and cogni-
tively normal controls by calculating deviations from nor-
mative ranges for each brain region and then identifying
statistical outliers. Specifically, we aimed to (1) assess the
extent of neuroanatomical variability between individual

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; FDR = false discovery rate;
IQR = interquartile range;MCI =mild cognitive impairment;MMSE =Mini-Mental State Examination;OASIS =Open Access
Series of Imaging Studies; p-tau = phosphorylated-tau; tOC = total outlier count; UCSF = University of California, San
Francisco; UKB = UK Biobank.
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patients based on overlapping or distinct patterns of outliers,
(2) quantify group differences in between-participant dis-
similarity, (3) relate the quantity of neuroanatomical outliers
to cognitive performance and AD biomarkers, and (4) ex-
amine whether the number of outliers relate to subsequent
disease progression from MCI to AD.

Methods
Participants
Participants were derived from 2 data sets: (1) a reference data
set that comprised healthy people across the human lifespan
and (2) a clinical target data set, which included people with
AD or MCI in addition to age-matched cognitively normal
controls. The reference data set was made by combining data
on healthy people from multiple publicly available sources,27

including OASIS, Adolescent Brain Cognitive Development
study, and UKB, detailed in eTable 1 (links.lww.com/WNL/
C774). The clinical data used in the preparation of this article
were obtained from the ADNI database.28 The criteria for study
inclusion was the availability of a baseline T1-weighted MRI,
which passed quality control. Furthermore, AD participants
had to meet the National Institute of Neurological and Com-
municative Disorders and Stroke-AD and Related Disorders
Association criteria for probable AD and were screened to
exclude genetic risk for familial AD. Participants with MCI
reported a subjective memory concern either autonomously or
via an informant or clinician, and participants had no significant
levels of impairment in other cognitive domains.

Standard Protocol Approvals, Registrations,
and Patient Consents
Written informed consent was obtained from all participants be-
fore experimental procedures were performed. Approval was re-
ceived by an ethical standards committee forADNI study data use.

MRI Acquisition
For the clinical data set, T1-weighted images were acquired at
multiple sites using 3TMRI scanners. DetailedMRI protocols
for T1-weighted sequences are available online.29 The quality
of raw scans was evaluated by University of California, San
Francisco (UCSF) before our exclusion criteria. Scans were
excluded based on technical problems and significant motion
artifacts and clinical abnormalities.30

Estimation of Cortical Thickness
T1-weighted scans from both the reference and ADNI data
sets were processed using a mix of both FreeSurfer versions 5
and 6. Cortical thickness values were generated using the
recon-all cross-sectional approach.31 This cortical thickness
algorithm calculates the mean distance between vertices of a
corrected, triangulated estimated gray/white matter surface
and gray matter/CSF (pial) surface,32 which generated the
cortical thickness of each region of the Destrieux atlas re-
gions.33 This included the mean cortical thickness and 148
regions cortical thickness values for each participant.

Quality control of FreeSurfer processing for the reference data
set relied on automated filtering median-centered absolute
Euler number higher than 25, as used in prior work.26,27 The
exclusion of outliers based on Euler numbers has shown to be
a reliable quality control strategy in large neuroimaging
cohorts.34,35 For the ADNI, quality control was based on a
visual review of each cortical region performed by UCSF.
Only scans that passed this quality control were used.

Neuroanatomical Normative Modeling
A hierarchical Bayesian regression model was trained on
multisite data to generate normative models per region using
the covariates age and sex. This was based on the population
variation in the reference data set (training data), which
adaptively pools parameter estimates across sites via a shared
prior over regression parameters across sites.27 This simulta-
neously accounts for intersite variation and allows sites to
borrow strength from one another in a fully Bayesian frame-
work. The advantage of training the models on the large in-
dependent data set, compared with just using the ADNI, is
that the ADNI consists of many sites with small sample sizes.
This would result in unstable estimates of normative distri-
butions that could be strongly influenced by outliers or
sampling bias. Here, by training on over n = 33,000 from only
9 data sets (with 60 sites), the model produces a stable dis-
tribution of estimates across the entire lifespan. Next, these
estimates were conditioned to our specific context, using an
adapted transfer learning approach.27 The parameters of the
reference normative model were recalibrated to the ADNI
data set using 70% of healthy controls per ADNI site, where
70% was used to give stable estimates of the transferred model
parameters, given that many of the scan sites in the ADNI
have quite small sample sizes. The remaining 30% of healthy
controls plus MCI and patients with AD were used to assess
the heterogeneity in neuroanatomical presentation. This
process generated regional and mean cortical thickness Z-
scores for each participant in the clinical data set, relative to
the normative range of the reference data set. All modeling
steps are performed using PCNtoolkit (version 0.20).

Statistical Analysis

Group Cortical Thickness Differences
Cortical thickness group comparisons were conducted us-
ing t tests at each region and corrected for multiple com-
parisons using the false discovery rate (FDR). Significant
p values were mapped onto the Destrieux atlas using the
R package ggseg.36

Outlier Definition and Statistics
Outliers in terms of low cortical thickness were identified for each
region, defined as Z <−1.96 (corresponding to the bottom 2.5%
of the normative distribution of cortical thickness). We only used
the lower bound threshold for outliers as we were interested in
cortical thinning associatedwith neurodegeneration. The number
of outliers was summed across 148 regions for each participant to
give a total outlier count (tOC) across regions. Linear regression
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tested for group differences in mean cortical thickness Z-score
and tOC. In addition, group comparisons at each region were
conducted using χ2 (FDR corrected). The Hamming distance, a
quantitative measure of similarity between binary thresholded
cortical thickness outlier vectors, was used to measure dissimi-
larity between individuals. Median Hamming distances were
compared between groups. To explore spatial patterns of cortical
thickness outliers per group, the proportion of participants within
each group whose cortical thickness was an outlier (i.e., Z <
−1.96) was calculated for each region. This enabled visualization
of the extent to which patterns of outlier regions overlap or are
distinct. This was mapped using the Destrieux atlas via the R
package ggseg. All statistical analyses were implemented in R
version 3.6.2.

Outlier Associations With Cognitive Function and CSF
Markers
Linear regression adjusting for age, sex, years of education, and
Clinical Dementia Rating (sum of boxes) examined the re-
lationship between tOC and cognitive composite scores
(memory using ADNI MEM or executive function using
ADNI EF).37 We assessed the interactional effects of the di-
agnostic group within a subsequent regression. Furthermore,
linear regression adjusting for age and sex only examined
the relationship between tOC and CSF markers (Aβ and
phosphoylated-tau [p-tau]). Here, we also assessed the in-
teractional effects of the diagnostic group within a subsequent
regression. To stratify outlier maps in both MCI and patients
with AD groups, we used total scores from the Mini-Mental
State Examination (MMSE).

MCI to AD Conversion Analysis
Follow-up diagnosis status data, up to 3 years from the
baseline scan, were obtained from 454 people with MCI. In
total, 76 people with MCI at baseline had converted to AD
within 3 years. We then ran a survival analysis using Cox

proportional hazards regression to assess whether tOC related
to the risk of converting from MCI to AD, controlling for age
and sex. We use a Kaplan-Meier plot to illustrate how either a
low or high tOC (split via median) can contribute to the risk
of converting.

Data Availability
Statistical analysis scripts are available on GitHub (github.com/
serenaverdi/ADNI_normative-modelling). The neuroanatomical
normative model was generated using the PCNtoolkit software
package (github.com/amarquand/PCNtoolkit). ADNI data used
in this study are publicly available and can be requested following
ADNI Data Sharing and Publications Committee guidelines:
adni.loni.usc.edu/data-samples/access-data/

Results
Participants
In the reference data set, a total of n = 33,072 T1-weighted
MRI scans were collated across 60 sites (this sample is de-
scribed in detail in Kia et al.27 and summarized in eTable 1,
links.lww.com/WNL/C774). The clinical ADNI data set
amounted to 1,492 participants which were scanned across
62 sites (Table 1). Here 70% of controls were removed from
the clinical data set and were used as a calibration data set to
adapt the normative model to the new sites. These controls
were randomly selected and stratified across sites and gender
to make sure all sites and genders are present in the adap-
tation set. This left a total of 1,027 participants in the final
clinical data set.

Patients With AD Have Smaller Cortical
Thicknesses Than People With MCI or With
Normal Cognition
Mean cortical thicknesses were compared across participant
groups. Age- and sex-adjusted mean cortical thickness

Table 1 Demographics of the ADNI Sample

Controls MCI AD Total Statistical differences

n 621 664 207 1,492 —

Sex, male:female 252:369 370:294 106:101 728:764 χ2 = 30.01, p = 3.04 × 10−7

Age, y, mean ± SD 72.2 ± 6.8 71.9 ± 7.7 74.0 ± 8.0 72.3 ± 7.4 F(2, 1,489) = 6.72, p = 0.001

Age, y, range 62.8–88.7 56.1–92.5 57.0–88.5 56.1–92.5 —

Total MMSE score, mean ± SDa 29.06 ± 1.18 27.82 ± 1.91 22.56 ± 3.19 26.94 ± 3.11 F(2, 1,400) = 867.97, p < 2.2 × 10−16

CSF Aβ, pg/mL, mean ± SD 246.55 ± 305.02 231.98 ± 275.41 178.07 ± 182.37 223.00 ± 263.87 F(2, 765) = 3.39, p = 0.03

CSF p-tau, pg/mL, mean ± SD 34.06 ± 17.96 40.82 ± 24.67 57.84 ± 32.22 43.42 ± 26.73 F(2, 765) = 37.11, p < 4.12 × 10−16

ApoE «4 negative (% = proportion
in the group sample)

385 (69) 322 (53) 58 (31) 765 (56) χ2 = 85.92, p < 2.2 × 10−16

Abbreviations: Aβ = β-amyloid; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; ANOVA = analysis of variance; MCI = mild
cognitive impairment; MMSE = Mini-Mental State Examination; p-tau = phosphorylated-tau.
Statistical differences were assessed using ANOVA and χ2 tests.
a MMSE had a maximum score of 30.
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significantly differed between groups overall (F(2, 1,487) =
137.9, p= 2.0 × 10−16). Pairwise comparisons (Tukey post hoc)
were all significant (p < 0.001), with mean cortical thickness
being lowest in AD (mean 2.28, SD 0.13, 95% CI 0.161 to
−0.124) and highest in controls (mean 2.42, SD 0.11, 95% CI
2.415–2.433), with MCI being intermediate (mean 2.38, SD
0.12, 95% CI −0.054 to −0.029) (eFigure 1, links.lww.com/
WNL/C774). Region-level pairwise group comparisons (total
of 148 regions—FDR corrected) provided evidence cortical
thickness measures were on average lower in 133 regions in AD
vs controls, in 111 regions in AD vs MCI and in 78 regions in
MCI vs controls (eFigure 1, links.lww.com/WNL/C774).

Next, cortical thickness Z-scores, derived from comparison
to the normative model, were then compared across par-
ticipant groups. In this way, we could compare the degree
to which each group differed from the separate reference
cohort, used to define the normative model. Consistent

with comparisons of mean cortical thickness, age- and sex-
adjusted Z-scores differed between groups overall (F(2,
1,022) = 69.49, p = 2.0 × 10−16). Pairwise comparisons
(Tukey post hoc) were all significant (p ≤ 0.003), with
Z-scores being lowest in AD (mean −1.27, SD 1.41, 95% CI
−1.630 to −1.130), highest in controls (mean 0.07, SD 1.04,
95% CI −1.053 to 0.374), and intermediate in MCI (mean
−0.28, SD 1.17, 95% CI −0.600 to −0.180) (eFigure 2A,
links.lww.com/WNL/C774).

Furthermore, age- and sex-adjusted tOCs differed between
groups overall (F(2, 1,022) = 95.39, p = 2.0 × 10−16). Pairwise
comparisons (Tukey post hoc) were all significant (p ≤
0.003), with tOCs being highest in AD (median 12, inter-
quartile range [IQR] 28, 95% CI 14.38–19.88), lowest in
controls (median 2, IQR 6, 95% CI 2.780–18.494), and in-
termediate in MCI (median 4, IQR 9, 95% CI 1.56–6.18)
(eFigure 2B, links.lww.com/WNL/C774).

Figure 1 Regional Maps of Heterogeneity

(A) Mapped are significant group differences of outliers. The color bar indicates effect size as Phiφ (0.1 is considered to be a small effect, 0.3 amedium effect,
and 0.5 a large effect). (B) Mapped is the percentage of outliers present within each participant group. The color bar reflects outlier proportion from 2.5% to
100% (thresholding of z-scores). Gray represents that no participants have outliers in those respective regions. AD = Alzheimer disease; MCI = mild cognitive
impairment.
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Region-level pairwise group comparisons (total of 148
regions—FDR corrected) showed higher numbers of outliers
in cortical thickness in 79 regions in AD vs controls, in 63
regions in AD vs MCI, and 1 region in MCI vs controls.
Region-level group differences in outlier count were most
evident within temporoparietal and to a lesser extent frontal
and occipital regions (Figure 1A).

PatientsWithADAre Less Similar to EachOther
Than People With MCI or With
Normal Cognition
Hamming distance matrices indicated greater within-group
dissimilarity in patients with AD, relative to MCI or control
participants, who were most similar to each other in spatial
patterns of outliers (Figure 2). The median hamming distance
significantly differed between groups overall (F(2, 1,024) =
209.42, p = 2.2 × 10−16). Pairwise comparisons (Tukey post
hoc) were all significant (p < 0.001), with being highest in AD
(median 32, IQR 32, 95% CI 26.29–29.43) and lowest in

controls (median 6, IQR 8, 95% CI −24.37 to −19.61), with
MCI being intermediate (median 10, IQR 14, 95% CI −18.52
to −14.92).

Patients With AD Have Spatially Higher
Proportions of Cortical Thickness Outliers
The proportion of outliers defined within each group differed
in regional patterns between AD, MCI, and control groups.
This is illustrated in Figure 1B and in eFigure 3 (links.lww.
com/WNL/C774). For a breakdown of proportions, see
eTable 2; for individual maps of outliers, see Video 1. A
greater number of regions and a higher proportion of the
group were outliers in patients with AD, as expected. In fact,
145 regions in the AD group had over the expected 2.5% of
patients with an outlier (based on the Z < −1.96 threshold).
The left parahippocampal gyrus was the region with the
highest outlier percentage (47% of the AD group). For the
MCI group, 138 regions in the MCI group had outliers (over
the expected 2.5% of the group). The left parahippocampal

Figure 2 Outlier Dissimilarity

(A) Outlier distance heatmaps: both x and y axes represent participants within each group. Yellow indicates higher hamming distance (greater dissimilarity
between participants in this brain region), as opposed to if participants are identical in this brain region, the Hamming distance would be 0, represented
by white in the color bar. (B) Outlier distance density: illustrates the spread of outlier dissimilarity (calculated by the Hamming distance) within each group.
AD = Alzheimer disease; MCI = mild cognitive impairment.
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gyrus was the region with the highest outlier percentage (14%
of theMCI group). For the control group, only 66 regions had
outliers above the expected 2.5%. The left occipital temporal
lateral sulcus was the region with the highest outlier per-
centage (6% of controls).

Outliers Are Associated With Cognitive
Function and CSF Aβ and p-Tau
tOC across the whole sample was significantly associated with
memory performance (β = −0.01, p = 2.2 × 10−16) and ex-
ecutive function (β = −0.02, p = 2.2 × 10−16) in a linear
regression model. To check for the association between 2
variables within a sample, we also model a group by tOC
interaction term, which was not significant for memory per-
formance (F(2, 849) = 2.28, p = 0.103) and executive function
(F(2, 849) = 2.534, p = 0.07) (Figure 3, A and B). Lower
MMSE scores showed different spatial patterns of outliers in
both MCI and patients with AD (Figure 4A) groups. How-
ever, total MMSE score and age did explain some of the
variance in tOC (adjusted R2 = 0.1793, p = 2.2 × 10−16).
In addition, tOC was significantly associated with Aβ
(β = 0.002, p = 0.022) and p-tau (β = 0.1301, p = 1.04 × 10−8),
which was not influenced by either group Aβ (F(2, 576) =
0.96, p = 0.38) or p-tau interaction (F(2, 576) = 1.362,
p = 0.257) (Figure 3, C and D).

Case Studies Suggest That Variability in
Cortical Thickness Is Not Solely Due to Disease
Stage or Other Clinical Factors
To explore whether individual differences in outlier maps
were driven by disease-related characteristics (such as ApoE
genotype and demographics) or by disease stage, we exam-
ined sets of participants closely matched for ApoE genotype
status, age, sex, and MMSE score. Figure 4B presents 4 in-
dividual female patients with AD all aged 71–72 years, het-
erozygous for ApoE e4, with similar MMSE scores, all of
whom were CSF amyloid positive, with no underlying
comorbidities. Furthermore, clinical impressions confirm that
these individuals all have mild dementia, with further confir-
mation of no depressive symptoms. These individual patients
might be considered similar from biological or clinical per-
spectives, yet their patterns of outliers in cortical thickness are
markedly variable; for example, variously suggesting lateral-
ized (patient 3) and occipital atrophy (patient 1).

Greater Numbers of Outliers Are Associated
With Risk of Conversion From Mild Cognitive
Impairment to AD
A survival analysis indicated that for every 10 points of tOC, the
risk of converting from MCI to AD within 3 years increased by
31.4% (hazard ratio 1.028, 95%CI 1.016–1.039, p = 1.8 × 10−16)

Figure 3 Cognitive Function and CSF Marker Association With tOC

Fitted lines are from a linear regression model per diagnostics group for (A) memory function, (B) executive function, (C) CSF β-amyloid, and (D) phos-
phoylated-tau. AD = Alzheimer disease; MCI = mild cognitive impairment; tOC = total outlier count.
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Figure 4 Regional Maps of Outliers, Stratified by the MMSE Score

Mapped is the percentage of region outliers proportional to the MMSE scoring subgroup in (A) participants with MCI and (B) patients with AD. The color bar
reflects outlier proportion from 2.5% to 100% (thresholding of z-scores). Gray represents that no participants have outliers in those respective regions. AD =
Alzheimer disease; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination.
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(Figure 5A). This is illustrated within a Kaplan-Meier plot, which
shows how a high tOC can contribute to the risk of converting in
comparison to a low tOC (Figure 5B).

Discussion
In this study, we defined individual spatial patterns of cortical
thickness outliers and illustrated that AD does not affect dif-
ferent people in a uniform way. Moreover, our analysis quan-
tified and visualized these individual differences in patterns of
cortical atrophy. Overall, the results of the present study pro-
vide evidence of (1) heterogeneous patterns of cortical thick-
ness between patients with AD, (2) associations of cortical
thickness heterogeneity with cognitive performance and CSF
Aβ and p-tau, and (3) the potential of individualized markers of
cortical thickness heterogeneity to predict survival time before
conversion from the MCI stage to diagnosed AD.

Our findings both complement and offer additional in-
formation to the established understanding of AD. We ob-
served a high tOC in patients with AD, consistent with the
evidence of cortical thinning as a consequence of AD neuro-
pathology.38 Moreover, we also observe significant associations
with cortical thinning and poor cognitive performance, a de-
crease in CSF Aβ, and an increase in CSF p-tau (Figure 3),

which is also consistent with previous findings.39,40 Atrophy has
also been associated with the risk of progression from MCI to
AD41 (Figure 5), alongside a combination of other bio-
markers.42 Importantly, these previous studies examined the
correlates of common patterns of cortical atrophy—yet con-
versely, we considered individual variability in patterns of
cortical thickness, as opposed to assessing group average rela-
tionships. This highlights that individualized measures of
neuroanatomy are sensitive to both nonimaging disease
markers and disease progression.

The tOC has the potential to be used as an individual patient
metric of poor brain health to help inform clinical decisions.
Indeed, similar measures have recently been adopted as a
clinical measure, that is, brain volume/thickness patient
Z-scores. However, these have been calculated using different
normative modeling techniques,43,44 which base their norma-
tive population on smaller reference samples; limit modeling to
just whole brain, or within specific regions; and do not account
for site-related variation (i.e., site effects). These studies also did
not fully relate these to clinical outcomes and cognitive scores.
Our tOC can provide an optimized measure here and will
translate within clinical applications for precision medicine.

When assessing regional heterogeneity of the ADNI sample,
we observed more outliers in patients with AD in temporal

Figure 5 Conversion From Mild Cognitive Impairment to AD

(A) Kaplan-Meier plot of MCI to AD conversion: the 2 lines represent a median split of tOC, with <4 classed as low tOC (blue) and ≥4 classed as high tOC (red).
Crosses indicate censoring points (i.e., age at last diagnosis assessment). The filled color represents the 95% confidence intervals. (B) Mapped is
the proportion of regional outliers among people with MCI who converted to patients with AD. AD = Alzheimer disease; MCI = mild cognitive impairment;
tOC = total outlier count.
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regions such as the hippocampus and the cingulate cortex.
These are areas known to be sensitive to neurodegeneration
in AD45 and are responsible for clinical symptoms in AD.46

However, looking beyond these group-average regional dif-
ferences, we observe that the highest proportion of outliers in
a single region was less than 50% in the AD group (Figure 1).
This suggests that the individual spatial patterns of outliers in
AD only partially overlap between patients; if atrophy were
homogenous (as assumed within group averages), we might
expect 100% of participants to have outliers here.

The observed variation in atrophy in the temporal lobe is
consistent with subtyping studies.8,47 Also, a recent study used
normative modeling to estimate neuroanatomical heteroge-
neity within the ADNI cohort, which shows similarities of
variation in atrophy within the temporal regions.48 However,
in comparison to these studies, our specific application of
neuroanatomical normative modeling has enabled the crea-
tion of an individual metric of neuroanatomical heterogeneity,
characterized the spatially distributed nature of alterations in
MCI and AD, and assessed how neuroanatomical variability
relates to cognitive performance, CSF biomarkers, disease
progression, or genetic factors. Furthermore, our study em-
ploys a normative modeling technique (hierarchical Bayesian
regression), which crucially accounts for the confounding
effects of multiple scanning sites when evaluating neuroana-
tomical heterogeneity in AD.

Going further, our study reveals that each patient not only
differs in the number of outliers they have, but the regional
patterns of outliers markedly differ (Video 1). The latter is
reflected in large levels of dissimilarity between individuals
with AD (Figure 2). Potentially, one reason for the variable
patterns of atrophy is simply disease stage, whereby more
atrophy appears with greater disease progression. However,
our results indicate that this is not the case, as when closely
examining patients of very similar demographics and clinical
characteristics, being at a comparable disease stage (e.g., based
on MMSE score), heterogeneous patterns of cortical atrophy
were still present (Figure 4).

It is surprising to observe that cognitively normal controls also
showed some outliers, suggesting a degree of within-group
heterogeneity (Figures 1 and 2). Therefore, the assumption of
homogeneity in case-control studies should be made with
caution, even in control groups. Statistical designs for basic
research and clinical trials should better reflect this hetero-
geneity in brain structure.

A few considerations can be made regarding the data sets used
within the study. Although the reference data set includes over
30,000 individuals, we should be cautious to assume that it is
representative of a healthy population. Also, patients who
volunteer for research studies (i.e., ADNI) do not necessarily
reflect the clinical population. Future neuroanatomical nor-
mative modeling studies could supplement the reference data
set with MRI scans acquired from routine clinical visits,

community cohorts, or other less selective sources. Finally,
the reference data were processed with a variety of FreeSurfer
versions. While impractical to unify the image processing
retrospectively, the different versions of FreeSurfer may po-
tentially add noise to the normative models. This represents
an important caveat to consider and further investigate.

As the ADNI comprises more participants with early-stage
dementia, examining late-stage patients with AD may offer
insights into the heterogeneity in spatial patterns of atrophy
across the disease course. Clinical observations have sug-
gested that late-stage patients with AD have widespread at-
rophy across the brain; therefore, we may hypothesize such
patients will have less heterogeneous patterns of atrophy.
However, regardless of the heterogeneous patterns of atro-
phy, the tOC can still provide information about the extent of
cortical atrophy in a given individual.

Another limitation of the ADNI data set is the underrepre-
sentation of cognitive domains beyond memory, executive
function, and language. Between a quarter to a third of the AD
group exhibit parieto-occipital outliers, comparable to separate
parieto-occipital predominant subtypes associated with prom-
inent visuospatial dysfunction,10 Further characterization of
how outlier distribution relates to nonmemory/executive
symptoms may be of particular clinical relevance, for example,
given the implications of visuospatial dysfunction for di-
minished autonomy, falls risk, and appropriate services.17,49,50

Future efforts when applying neuroanatomical normative
modeling to AD data should incorporate serial neuroimaging
across multiple time points. This will help define patient-level
longitudinal trajectories. Mapping neuroanatomical variability
using neuroanatomical normative modeling at different time
points has the potential to improve predictions of disease
progression or treatment response at the level of the in-
dividual patient. Apart from our MCI to AD analysis, the
sample taken from this study is cross-sectional, reflecting a
snapshot in time, yet heterogeneity has been shown to differ
temporally.51 Potentially, data-driven staging methods here
(e.g., SusStain15) may also provide clinically useful in-
formation of longitudinal trends of individual heterogeneity
while taking account of an individual’s disease stage.

Furthermore, it will also be valuable to map variation using
other neuroanatomical metrics, such as subcortical volumes.
Our methodology can be extended to include subcortical
volumes by using a reference data set that has such data
available.23 Future efforts that adopt this could enrich our
understanding of regional anatomic heterogeneity between
patients.

We provide a quantitative approach to estimate variability in
brain atrophy at the regional level for individual patients.
Individualized maps of neuroanatomical outliers were related
to cognitive performance and CSF biomarkers. Furthermore,
the number of outliers, based on individual patterns, helped
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predict conversion from MCI to AD. These individual neu-
roanatomical maps, derived from normative models, have the
potential to be a marker of AD state. These could index dis-
ease progression or even evaluate the effectiveness of poten-
tial disease-modifying treatments tailored to the individual
patient.
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