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Abstract
Background and Objectives
In medical imaging, a limited number of trained deep learning algorithms have been externally
validated and released publicly. We hypothesized that a deep learning algorithm can be trained to
identify and localize subarachnoid hemorrhage (SAH) on head computed tomography (CT) scans
and that the trained model performs satisfactorily when tested using external and real-world data.

Methods
We used noncontrast head CT images of patients admitted to Helsinki University Hospital
between 2012 and 2017. We manually segmented (i.e., delineated) SAH on 90 head CT scans
and used the segmented CT scans together with 22 negative (no SAH) control CT scans in
training an open-source convolutional neural network (U-Net) to identify and localize SAH. We
then tested the performance of the trained algorithm by using external data sets (137 SAH and
1,242 control cases) collected in 2 foreign countries and also by creating a data set of consecutive
emergency head CT scans (8 SAH and 511 control cases) performed during on-call hours in 5
different domestic hospitals in September 2021. We assessed the algorithm’s capability to identify
SAH by calculating patient- and slice-level performance metrics, such as sensitivity and specificity.

Results
In the external validation set of 1,379 cases, the algorithm identified 136 of 137 SAH cases
correctly (sensitivity 99.3% and specificity 63.2%). Of the 49,064 axial head CT slices, the
algorithm identified and localized SAH in 1845 of 2,110 slices with SAH (sensitivity 87.4% and
specificity 95.3%). Of 519 consecutive emergency head CT scans imaged in September 2021,
the algorithm identified all 8 SAH cases correctly (sensitivity 100.0% and specificity 75.3%).
The slice-level (27,167 axial slices in total) sensitivity and specificity were 87.3% and 98.8%,
respectively, as the algorithm identified and localized SAH in 58 of 77 slices with SAH. The
performance of the algorithm can be tested on through a web service.

Discussion
We show that the shared algorithm identifies SAH cases with a high sensitivity and that the
slice-level specificity is high. In addition to openly sharing a high-performing deep learning
algorithm, our work presents infrequently used approaches in designing, training, testing, and
reporting deep learning algorithms developed for medical imaging diagnostics.
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Classification of Evidence
This study provides Class III evidence that a deep learning algorithm correctly identifies the presence of subarachnoid
hemorrhage on CT scan.

The use of head CT imaging has continued to increase among
adults during the 21st century.1 Moreover, in keeping with the
increasing trend in favoring health care system integrations and
consolidations,many countries have centralized radiology services
during on-call hours. This leads to significantly higher volumes
and complexity of on-call imaging cases, which in turn place
increasing pressure on on-call radiologists. In fact, the overall on-
call workload for radiologists has quadrupled in the past 15 years.2

Head CT scans are among the most frequently requested after-
hour imaging studies in hospitals. HeadCT scans outside normal
working hours are mostly requested by emergency departments,
where findings in an urgent head CT scan can change the pa-
tient’s medical care. Perhaps the 2 most common patient groups
who are imaged with an urgent head CT scan are patients with
headache and stroke, for whom any delays in ruling out issues,
like intracranial bleedings, may be tragic. Of the types of in-
tracranial bleedings, undiagnosed subarachnoid hemorrhage
(SAH) is among the most alarming ones because if the frequent
cause, that is, a ruptured intracranial aneurysm, is left untreated,
at least 75% of today’s SAH patients die within a year.3 In
middle-aged people, SAHdeaths surpass the number of ischemic
stroke deaths, and SAHdeaths are in fact themost common type
of stroke deaths in particularly middle-aged women.4

Although the rate of missed or misdiagnosed head CT findings
is low, especially at academic centers, misinterpretations do
happen, particularly during after hours, which are often covered
by somewhat less experienced clinicians. It has been found that
after-hour head CT reports provided by radiology residents at
an academic large center were inaccurate in 4.6% of the cases.5

Fortunately, however, only 0.62% of the cases that were not
identified or were inaccurately reported were intracranial hem-
orrhages (one-third of these were SAHs).5 These facts consid-
ered, the primary research question being addressed in this
study was as follows: can a deep learning algorithm correctly
identify and localize the presence of SAH on head CT scans.

Methods
Head CT Images for Deep Learning Training
We extracted noncontrast head CT images from the Hel-
sinki University Hospital (HUH) Picture Archiving and

Communication Systems (PACS) archive. First, using the
HUH electronic medical records, we identified (based on the
ICD-10 category code I60) patients with SAH treated at HUH
between 2012 and 2017 (Table 1). Similarly, we created a
negative control group (no SAH on a head CT scan) by
searching for patients who were admitted to the HUH emer-
gency departments between 2011 and 2018 (Table 1), imaged
with a head CT scan, and discharged home on the same ad-
mission day with a discharge diagnosis of headache (ICD-10
codes R51 and G44.2). Because the head CT studies were
performed with various multislice CT scanners, reconstructed
slice thicknesses varied between 2 and 5 mm (Table 1). Sim-
ilarly, the used imaging protocols varied by year, scanner, and
hospital. Second, of the tens of thousands of potential cases and
controls, we extracted noncontrast head CT studies of the
identified patients and control subjects from the PACS archive,
which contains more than 21 million digitally stored Digital
Imaging and Communications inMedicine (DICOM) imaging
studies. The extracted DICOM image series of patients with
SAH consisted of axially reconstructedmultiplanar reformatted
(MPR) volumes imaged with 4 different CT scanners at HUH
hospitals (Table 1). A similar image data set of control subjects
originated from 5 different CT scanners (Table 1). In 2021, the
HUH had altogether 19 different CT scanners. Third, after a
slice-wise review of the extracted DICOM image series, 2 study
authors (A.T. and M.K.) selected 98 MPR volumes corre-
sponding to 96 patients with SAH, with 1 patient having 2
follow-up CT scans, and 985 MPR volumes corresponding to
949 control people with headache (no SAH detected on head
CT scans), as 18 people were imaged at least twice. Apart from
SAH, no other inclusion criteria were applied (such as de-
mographics, findings of medical interventions [e.g., aneurysm
clips, aneurysm coils, and ventricular catheters], image artifacts,
image quality, image reconstruction methods, or image reso-
lution) for the selected MPR volumes of patients with SAH.

Segmentation of SAH on Head CT Images
Figure 1 and our previous publication6 present the concepts of
annotation and segmentation. In brief, using the open-source
utility dcm2niix, we converted the selected DICOM images
to the Neuroimaging Informatics Technology Initiative (NIfTI)
open file format for further processing. A trained medical
image analyst (A.T.) performed a manual segmentation task

Glossary
CE = Conformité Européenne; DICOM = Digital Imaging and Communications in Medicine; HUH = Helsinki University
Hospital; ICD = International Classification of Diseases; MPR = multiplanar reformatted; NIfTI = Neuroimaging Informatics
Technology Initiative; PACS = Picture Archiving and Communication Systems; SAH = subarachnoid hemorrhage; U-Net =
neural network.
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(i.e., delineated SAH evident on head CT scans) using the open-
source software ITK-SNAP e1 and 3D Slicer.e2 Following this,
the study neurosurgeon (M.K.) reviewed and adjusted the seg-
mentations for the training set, but not for a data set segmented

to assess a pixel-level algorithm performance. We performed
adjustments to the segmented data only when a mutual (A.T.
and M.K.) agreement was achieved. These segmentations
(i.e., ground truths) were drawn only onto the axial MPR planes,
since the axial MPRs are commonly used in clinical diagnostics.

Preprocessing of Training Images
We downsampled the 512 × 512 image resolution to 256 ×
256, which in other words downscaled the NiFTI image slices
by a factor of 2 both in horizontal and vertical directions. In
downsampling, we kept the original slice numbers of every
scan. We clipped the intensities of the head CT scans using
the window range of [0, 150] Hounsfield units. Following
this, we divided the segmented and preprocessed NiFTIMPR
volumes into training and test sets.

Training of the Deep Learning Algorithm
In training, we used an open-source and standard
2-dimensional 5-level U-Net-type architecture,7,8 in which
each level consisted of 2 convolutional layers followed by
max-pooling on the downscaling path and upsampling on the
upscaling sides. The number of feature maps per each level
was 30, 60, 120, 240, and 480. Simplified, U-Net is a con-
volutional neural network that has been designed particularly
for medical image segmentation. The U-Net architecture is
based on fully convolutional layers, and therefore, it may be
trained with fewer images yet yielding accurate segmenta-
tions. In training, the network learns to classify pixels as either
positive or negative, based on segmented (i.e., every pixel
including the lesion of interest outlined positive) training
images. When the fed input image travels through each con-
volutional layer, the so-called feature maps are generated by
superimposing different filters (i.e., mathematical functions)
on the input image, and the output value of the filter function
is called a feature map. The feature map size changes at each
convolutional layer, and the network learns to identify lesion-
specific image features. Following training, the network is fed
with raw images (no segmentations), and the trained U-Net
creates a segmentation mask (i.e., outlines identified lesions)
as a visual output.

Table 1 Training and Control Data Sets Used in the
Algorithm Development

SAH Controls

SAH cases 98 985

Women (%) 68 (69.4) 525 (53.3)

Men (%) 30 (30.6) 438 (44.5)

Other (%) 0 (0.0) 5 (0.5)

Not available 0 (0.0) 17 (1.7)

Number of axial slices

SAH 1,681 0

No SAH 3,555 34,994

Slice thickness in mm, mean (SD) 4.2 (0.7) 4.0 (0.3)

Slices per case, mean (SD) 36 (8) 36 (7)

Age in years, mean (SD) 56.7 (12.9) 47.6 (15.6)

Cases per scanners 98 985

Siemens Somatom Definition Edge 1 279

Siemens Somatom Definition AS+ 8 478

Siemens Somatom Definition Flash 0 45

GE LightSpeed VCT 84 14

GE Discovery CT750 HD 5 152

Not available 0 17

Abbreviation: SAH = subarachnoid hemorrhage.
Of the 98 head CT scanswith SAH, 90were randomly picked for training, and
the remaining 8 were used to continuously evaluate the performance of the
deep learning model during training. Of the 985 control head CT scans, 22
and 963 were used for training and testing (during training), respectively.
The HUH hospital organization has 23 hospitals, and head CT scans were
performed in different hospitals of the same hospital organization.

Figure 1 Basic Concepts of Image Annotations and Segmentations Illustrated

In the patient-level annotation, the whole head CT scan
(MPR volume) is classified as either positive or negative
for SAH (A). In slice-level annotations, each of the ap-
proximately 30–40 axial slices of the head CT scan (MPR
volume) is classified as either positive or negative (B). In a
pixel-level segmentation, the aim is to delineate every
positive pixel in every single slice (C). Segmentation of
SAH is a time-consuming and laborious procedure, and
therefore, medical images are mostly annotated (not
segmented). MPR = multiplanar reformatted; SAH =
subarachnoid hemorrhage.
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We used the training set simply in training of the algorithm to
segment SAH, whereas the small test data set (8 head CT
scans) was reserved for testing the trained model along the
training process. Of the 98 head CT scans with SAH, we
picked randomly 90 for training. Of these 90 MPR volumes
with SAH, 23 were head CT scans taken on admission before
any invasive treatments. The remaining 67 MPR volumes
were postoperative, of which 40 included aneurysm clips and
clip-related artifacts, 22 included aneurysm coils and coil-
related artifacts, and 5 were volumes showing ventricular
catheters. We used the remaining 8 of 98 MPR volumes of
patients with SAH as the small test data set during training to
continuously evaluate the performance of the model. Of the
negative (no SAH) control group of 985 head CT scans, we
used 22 for training.

External Validation
For the external validation, we used 2 different data sets,
namely Zurich and CQ500 data sets (Table 2). These data
sets were not used in any training or testing phases. We
assessed the algorithm’s capability to identify SAH and
reported the results based on patient- and slice-level annota-
tions. We calculated the patient- and slice-level9 performance

metrics of the Zurich data set. Because the CQ500 data set
included only case-level (not slice-level) annotations, we
calculated only patient-level metrics for the CQ500 data set.

Zurich External Data Set
The coauthors from Zurich, Switzerland, selected and
extracted head CT images of 100 consecutive patients with
SAH and 1,000 consecutive control subjects (without SAH)
from the PACS system of the University Hospital Zurich. To
retrieve authentic real-world clinical data from another large
hospital, we provided no other advice for the case and control
selection process. Furthermore, we suggested no limitations
apply for the CT scanners, imaging parameters, or imaging
dates. We provided the coauthors with the trained algorithm,
and the whole external validation process was conducted in-
dependently in Zurich. DICOM files were converted to the
NiFTI files using the dcm2niix software. Preprocessing was
performed with the scripts provided by the HUH research
team, and these operations were run on an offline machine
(Windows 10, AMD 1950X 32-Thread, 64 GB RAM, GTX
980 Ti). The algorithm’s segmentations were visually checked
using ITK-SNAP, and 2 raters (M.V. and V.S.) calculated the
slice-level and patient-level performance metrics.

Table 2 External Validation Data Sets

Zurich SAH Zurich controls CQ500 SAH CQ500 controls

Cases 100 1,000 37 242

Women (%) 62 (62.0) 442 (44.2) n/a n/a

Number of axial slices 2,110 46,954 1327b 11,720b

Age in years, mean (SD) 55.2 (13.4) 60.0 (18.8) n/a n/a

Axial slices, mean (SD) 44.3 (6.7) 44.6 (15.2) 35.9 (9.3) 48.4 (55.9)c

Diagnoses (%) 100 (100) 397 (39.7) n/a n/a

Aneurysmal SAH 100 (100.0) 0 (0)

Traumatic brain injury 0 (0) 232 (23.2)

CSDHa 0 (0) 67 (6.7)

Hydrocephalus (NPH) 0 (0) 62 (6.2)

Various tumors 0 (0) 36 (3.6)

CT scanners Siemens Somatom
Definition Flash

GE BrightSpeed

GE Discovery CT750 HD

GE LightSpeed

GE Optima CT600

Philips MX 16-slice

Philips Access-32 CT

Abbreviations: CSDH = chronic subdural hematoma; n/a = data not available, NPH = normal pressure hydrocephalus; SAH = subarachnoid hemorrhage.
a CSDH = chronic subdural hematoma.
b Slices were not annotated.
c Numerous CQ500 head CTs were thin-slice scans without reconstructions.
The 5most common imaging diagnoses are presented. Apart from the listed diagnoses, headCT imaging studieswere performed for peoplewith for example
epileptic seizures, headaches, and acute neurologic deficits. The data set also included postoperative images with artifacts.
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Open-Source External Data Set CQ500
A subset of open-source data set CQ5009 and its patient-level
annotations from 3 raters as a ground truth was used as another
external data set for validation. We rated the head CTs of
patients as SAH cases when all 3 raters had annotated ac-
cordingly. Similarly, the head CT scan was considered negative
(a control) if none of 3 rates found an intracranial bleeding in
the scan. The final set consisted of 37 head CT scans with SAH
and 242 head CT scans with no intracranial bleedings.

Simulated Real-World Validation
Because the external validation set from Zurich originated from
a large neurosurgery unit of a tertiary university hospital, which
provides emergency care mostly for unconscious patients and
patients already diagnosed with emergence lesions on head CT
scans, we collected all consecutive emergency head CT scans
imaged in September 2021 in 5 HUH hospitals, which have no
neurosurgical services. These 5 hospitals and their case mix may
therefore better resemble smaller on-call hospitals with headCT
imaging facilities but no neurosurgical services. All collected CT
scans were anonymized (no radiologic reports available), and
annotated (slice-level) followingly for SAH by 3 coauthors
(M.K., H.P., and A.T.). Similar to the CQ500 data set, an
agreement of all 3 raters was considered a ground truth. After
annotation, we analyzed all head CT scans using the algorithm.

Pixel-Level Accuracy
Because neither the external validation data sets nor the real-
world validation data sets were segmented, that is, they did not
include pixel-level information about the true positives and
negatives, 1 coauthor (A.T.) segmented additional 49 SAH cases
as described earlier to test the model’s pixel-level performance.
The coauthor (A.T.) randomly selected 46 SAH of 1,237 non-
contrast head CT studies of the identified patients with SAH
(eTable 1, links.lww.com/WNL/C554) and included additional
3 SAH cases in which the diagnosis of SAHwas originallymissed,
despite of positive head CT imaging findings.10 After segmen-
tation, we analyzed all head CT scans using the algorithm.

Postprocessing of Segmentations
As a sensitivity analysis, we applied simple postprocessing
steps to the patient-level segmentations to reduce the number
of false-positive cases. For the Zurich data set, we visually
thresholded the number of cases where only 1 slice with a
single pixel cluster was segmented positive. This single cluster
in only 1 positive slice was considered negative (no SAH
detected). For the CQ500 and HUH September 2021 data
sets, we computed a Python script to evaluate the thresh-
olding similarly, that is, if the case had only 1 slice with 1
segmented SAH cluster, the case was considered negative.

Statistical Analyses
Patient-level metrics for the CQ500 and patient-, slice-, and
pixel-level metrics for the HUH data sets were calculated au-
tomatically using Python scripts computed for these tasks.
These metrics include sensitivity, specificity, false-positive rate,
false-negative rate, and accuracy. We performed all statistical

analyses with the Python package numpy and generated statis-
tical plots with matplotlib.

Ethical Considerations
The local institutional review board of HUH approved the
retrospective data collection and study design and granted a
waiver for acquiring an informed consent (HUS/365/2017,
HUS/163/2019, and HUS/190/2021). According to Finnish
legislation, no separate ethics committee approval is needed
for retrospective studies that involve a secondary use of reg-
istry or archive data. We gathered all imaging data for algo-
rithm training from the HUH, which consists of 23 separate
hospitals and has a catchment area of approximately 2.2
million inhabitants. All 5 Finnish university hospitals, in-
cluding the HUH, are publicly funded nonprofit organizations
that provide tertiary health care services for all people living in
Finland, regardless of socioeconomic status, insurance status,
or race/ethnicity. Therefore, we believe that the HUH im-
aging data for algorithm training are not inherently biased or
deliberately discriminative. We conducted the study in line
with the Declaration of Helsinki.11 In Switzerland, the study
was approved by the Zurich Cantonal Ethics Board (KEK Nr.
2020–02725) and the Data Governance Board of the Uni-
versity Hospital Zurich (Nr. DUP-66).

Data Availability
Finnish health care data for secondary use can be obtained
through FINDATA (Social andHealth Data Permit Authority
according to the Secondary Data Act). The used Finnish and
Swiss health care data cannot be shared openly. Access to the
CQ500 image set can be obtained through a website.e3 To
share the algorithm code with others, we uploaded the code to
the GitHub repository.e4 For the sake of reliability and
transparency, we launched a website,e5 where anyone can test
the algorithm performance by uploading head CT scans for
analysis.

Results
External Validation
The external validation data set consisted of 1,379 head CT
scans (137 SAH cases) (Table 2). Few head CT scans from
the external validation set were imaged with the same CT
scanner (GE Discovery CT750 HD) that was used in imaging
the training data set (Tables 1 and 2). The confusion matrices
show the patient-level (Table 3) and slice-level (Table 4)
results. Figure 2 shows 4 examples of how the algorithm
identified and localized (i.e., segmented) SAH. The overall
patient-level sensitivity and specificity were 0.99 and 0.63 for
SAH, respectively (Table 3). The 1,379 head CT scans were
composed of 49,064 reconstructed axial slices, of which 2,110
included SAH (Table 4). The slice-level sensitivity and
specificity were 0.87 and 0.95, respectively (Table 4).

The algorithm incorrectly classified 1 (0.7%) of 137 SAH
cases as negative (Table 3, eFigure 1, links.lww.com/WNL/
C554). At the slice level, the false-negative misclassification
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rate was 12.6% (Table 4). In terms of false positives, the
results of the external validation showed a false-positive rate of
36.8% at the patient level (Table 3). Some of the false-positive
cases were other abnormal findings than SAH. For example, of
the 34 false-positive cases in the CQ500 data set, the algo-
rithm falsely segmented 1 tumor, 1 artifact, 8 cases with cal-
cifications, and 23 cases with no abnormal findings. Similarly,
of the 423 false-positive cases in the Zurich data set, 138
(32.6%) were postoperative hematomas/hemostatic sealants,
54 (12.8%) ischemic lesions, 23 (5.4%) chronic subdural
hematomas, and 21 (5.0%) tumors. At the slice level, the false-
positive rate was 4.7% (Table 4).

Simulated Real-World Validation
Of the 519 consecutive emergency head CT scans imaged
during on-call hours in September 2021 in 5 smaller HUH
hospitals without neurosurgical services, the algorithm identi-
fied all 8 SAH cases (Table 5). All CT scanners in the 5 smaller
hospitals were newer and differed from those used in imaging
the training data set. The patient-level sensitivity and specificity
were 1.00 and 0.87, respectively (Table 5). The slice-level
sensitivity and specificity were 0.75 and 0.99, respectively
(Table 5). At the slice level, the false-positive rate was 1.2%
(Table 5). Patient- and slice-level IRRs for 519 consecutive head
CT scans were high (eTable 2, links.lww.com/WNL/C554).

Table 3 Patient-Level Results of the External Validation

Zurich SAH Zurich controls CQ500 SAH CQ500 controls SAH cases in total Controls in total

Cases 100 1,000 37 242 137 1,242

Predicted SAH 100 423 36 34 136 457

Sensitivity (95% CIs) 1.00 (0.96–1.00) 0.97 (0.86–1.00) 0.99 (0.96–1.00)

Specificity (95% CIs) 0.58 (0.55–0.61) 0.86 (0.81–0.90) 0.63 (0.60–0.66)

False-positive rate (95% CIs) 0.42 (0.39–0.45) 0.14 (0.10–0.19) 0.37 (0.34–0.40)

False-negative rate (95% CIs) 0.00 (0.00–0.04) 0.03 (0.00–0.14) 0.01 (0.00–0.04)

Accuracy (95% CIs) 0.62 (0.59–0.64) 0.87 (0.83–0.91) 0.67 (0.64–0.69)

CT scanners Siemens Somatom
Definition Flash

GE BrightSpeed Siemens Somatom Definition Flash

GE Discovery CT750 HD GE BrightSpeed

GE LightSpeed GE Discovery CT750 HD

GE Optima CT600 GE LightSpeed

Philips MX 16-slice GE Optima CT600

Philips Access-32 CT Philips MX 16-slice

Philips Access-32 CT

Abbreviation: SAH = subarachnoid hemorrhage.

Figure 2 Examples of Segmentation Results

(A) with the trained deep learning algorithm.
The overall sensitivity of the algorithm was
considered satisfactory, and it identified and
localized SAH on axial head CT slices with ex-
tensive SAH (upper left image), sulcal SAH (up-
per right image), streaking clip artifacts (lower
left image), and distortions (lower right image).
The same images are presented in panel B
without segmentations. SAH = subarachnoid
hemorrhage.
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Pixel-Level Accuracy
Because neither the external validation data set nor the
simulated real-world validation data set included segmented
images, we segmented and analyzed additional 49 SAH cases

to test the model’s pixel-level performance (eTable 1, links.
lww.com/WNL/C554). The slice-level sensitivity and
specificity were 0.78 and 0.97, respectively (eTable 3). At the
slice level, the false-positive rate was 3.3% (eTable 3, links.
lww.com/WNL/C554). The pixel-level sensitivity and
specificity were 0.53 and >0.99, respectively (eTable 3, links.
lww.com/WNL/C554). The pixel-level false-positive rate
was <0.01%. Anecdotally, the algorithm also identified 3
SAH cases that were originally misdiagnosed in real life
(eFigure 2, links.lww.com/WNL/C554). The CT scanners
used in imaging the 49 SAH cases (eTable 1) were mostly
the same as the scanners used in imaging the training set
(Table 1).

Online Validation Portal
We launched a website,e5 where anyone can test the accuracy of
the SAH algorithm by uploading (drag and drop) noncontrast
head CT scans for analysis. Axial MPR reconstructions should
be converted (with any open-source DICOM-to-NiFTI con-
verter) to the NiFTI format before uploading to fully ano-
nymize the image data. The website is deployed, and the
analysis of 1 head CT scan with 30–40 axial MPR slices takes
around 30 seconds. The segmentation results are presented in
color for visual inspection. The website is open for 180 days
following online publication.

Classification of Evidence
This study provides Class III evidence that a deep learning
algorithm correctly identifies the presence of subarachnoid
hemorrhage on CT scan.

Table 4 Head CT Slice-Level Results of the External
Validation

Zurich SAH
Zurich
controls

Slices 2,110 46,954

Predicted SAH 1845 2,200

Sensitivity (95% CIs) 0.87 (0.86–0.89)

Specificity (95% CIs) 0.95 (0.95–0.96)

False-positive rate (95% CIs) 0.05 (0.04–0.05)

False-negative rate (95% CIs) 0.13 (0.11–0.14)

Accuracy (95% CIs) 0.95 (0.95–0.95)

CT scanners Siemens Somatom
Definition Flash

Abbreviation: SAH = subarachnoid hemorrhage.
The CQ500 data set from India did not have slice-level annotations. There-
fore, the data set was not included in slice-level analyses.

Table 5 Patient- and Slice-Level Results of All 519 Emergency Head CT Scans Performed During On-Call Hours in
September 2021 in 5 of 23 Hospitals of the Study Hospital Organization (HUH)

SAH No SAH Slices with SAH Slices without SAH

Number 8 511 77 27,090

Women (%) 3 (37.5) 280 (54.8) n/a n/a

Age in years, mean (SD) 76.0 (8.9) 67.6 (20.3) n/a n/a

Predicted SAH 8 65 58 329

Sensitivity (95% CIs) 1.00 (0.68–1.00) 0.75 (0.65–0.84)

Specificity (95% CIs) 0.87 (0.84–0.90) 0.99 (0.99–0.99)

False-positive rate (95% CIs) 0.13 (0.10–0.16) 0.01 (0.01–0.01)

False-negative rate (95% CIs) 0.00 (0.00–0.32) 0.25 (0.16–0.35)

Accuracy (95% CIs) 0.87 (0.84–0.90) 0.99 (0.99–0.99)

CT scanners Siemens Somatom X.cite

Siemens Somatom go.Top

Toshiba Aquilion Prime 80

Canon Aquilion Prime 80

Abbreviations: n/a = not applicable; SAH = subarachnoid hemorrhage
All 8 SAH cases were traumatic, and all CT scanners were different (as in Table 1) than those used in imaging the training data set of the model.
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Discussion
The presented deep learning algorithm identified SAH
correctly in 136 (99.3%) of 137 cases that were imaged with
7 different CT scanners in 2 countries (India and Swit-
zerland). The only missed SAH was part of the CQ500 data
set (eFigure 1, links.lww.com/WNL/C554). In terms of
specificity, the algorithm incorrectly segmented SAH in
457 (36.8%) of 1,242 controls. The slice-level false-positive
rate was 2,200 (4.7%) per 46,954 axial reconstructed head
CT slices. A standard reconstructed head CT scan that is
used in clinical diagnostics contains usually 30–40 axial
MPR slices. If this algorithm was used in a clinical setting,
the algorithm would falsely alarm clinicians about SAH in
around every third normal (i.e., no SAH) head CT scan,
and in these cases, 1–2 incorrectly segmented slices should
be carefully inspected to revise the diagnosis. When de-
signing algorithms for life-threatening emergency condi-
tions, the sensitivity should optimally be close to 100%
(i.e., no missed cases), although 100% sensitivity is a
challenging goal even for human eyes. If such an algorithm
also has a nonzero false-positive rate (less than 100%
specificity), this obliges clinicians to inspect every positive
case (also true positive cases). This may ensure that the
algorithm is not replacing clinicians or radiologists but
acts in real-life medical practice more like a collaborative
colleague.

Trained imaging algorithms are frequently based on a high
number of images. This same applies to algorithms for in-
tracranial hemorrhages, which are often trained with a high
number of annotated images.12 Our approach of using a small
number of real-word training images with pixel-level seg-
mentations instead of slice-level annotations may encourage
others to adopt a similar strategy in training deep learning
algorithms. When training images are segmented, large image
data sets are less often needed, and deep learning projects
become possible also in smaller medical centers. In addition to
high-quality training, a validation process is of paramount
importance. Although the sensitivity and specificity of in-
ternally validated imaging algorithms for SAH can be very
high, their performance metrics when tested with external
clinical data are often compromised.12 Because prior studies
reporting deep learning algorithms that localize and identify
SAH on head CT scans are scarce, any comparison between
our and previous studies is difficult. In a seminal study on
which the CQ500 data set is based and made available for the
public, the highest patient-level sensitivity and specificity for
identifying (not localizing) SAH were 92% and 90%, re-
spectively.9 Patient-level results of another deep learning so-
lution, the results of which were validated using an external
data set of a reasonable (>100 positive cases) size, showed
sensitivity and specificity of 85% and 97%, respectively.13 In a
large external validation study of the world’s first and most
widely used commercial deep learning solution (which can
only interpret thin 0.5–1mm axial CT images of modern [>64
slices] CT scanners) for identifying intracranial hemorrhages,

the patient-level sensitivity for identifying SAH was 93%.14

Apparently, many previous algorithms have probably been
optimized not only for sensitivity but also for specificity at the
expense of sensitivity. To avoid a deep learning model sur-
passing clinicians, our approach was to reach a very high
sensitivity and a lower specificity, in which case a clinician
deep learning model collaboration may become more likely.
Of interest, 56% of false positives in our Zurich data set were
in fact other pathologic lesions, such as postoperative hema-
tomas. Indeed, the accuracy and particularly the false-positive
rate of the algorithm can vary depending on natural con-
founders (other blood-containing pathologic lesions) and
intended use (e.g., not intended to be used in postoperative
imaging).

One of the study’s strengths may be that the training data set
included preoperative and postoperative artifacts and distortions.
The training data set was imaged using different CT scanners,
thus perhaps improving the generalizability of the algorithm.
Moreover, because the external validation was conducted by
using international data sets, and because the simulated real-
world validation data set consisted of all consecutive head CT
scans imaged in September 2021 in 5 different hospitals with 5
recently purchased modern CT scanners (none of which were
used in imaging any other head CT scans in this study), these
results may be generalizable. In addition, benchmarking our re-
sults is feasible with the open-source CQ500 data set. It is
generally recommended to use not only open-source deep
learning tools but also open-source data sets when available. We
used open-source tools for segmentations, file conversions, and
algorithm development. Despite having no influence on the
selection process of images in India and Switzerland, these data
setsmay still somehow represent optimal cases for our algorithm,
and therefore the results can be an overestimate. Because
reproducing results based on machine learning algorithms is
practically impossible by other research groups, we also launched
a website,e5 where anyone can test the performance of the al-
gorithm by uploading head CT images in a NiFTI format
(i.e., anonymized data) for validation. Moreover, many deep
learning algorithms are incapable of illustrating, visualizing, and
delineating abnormal imaging findings, whereas the presented
algorithm highlights SAH. This visualizationmay ease and fasten
the image interpretation.15 As a further matter, the used U-Net
architecture is small and can therefore be deployed on com-
puters and devices with little computing power. Finally, we
shared the algorithm for research purposes and further de-
velopment in GitHub.e4 Maybe even low-income countries can
benefit from this solution.

The training data set consisted of people living in Finland.
Because Finns are genetically considered an independent
subpopulation of the European population,16 our algorithm
may be biased. Particularly, the false-positive rate varied
between data sets. Whether this depends on the race re-
mains to be studied. In addition, we lack a Conformité
Européenne (CE) mark for the algorithm, which belongs to
high-risk classes (IIa, IIb, and III) of medical devices. Such
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accredited assessment and issuing the CE mark are ex-
pensive and time-consuming processes, and many univer-
sity hospitals have little capability to productize medical
devices. Moreover, because only 1 data set was segmented
(i.e., every pixel with SAH was delineated), and this data set
came from Finnish hospitals, we were able to calculate
pixel-level performance metrics only for this data set
(eTable 3, links.lww.com/WNL/C554). Because a ground
truth segmentation for SAH on head CT scans is a rather
impractical measure (i.e., it is challenging for experts to
agree about true positives and negatives at the pixel level),
pixel-level results are clinically less meaningful and sel-
domly, if ever, reported. However, the pixel-level results
were satisfactory (eTable 3, links.lww.com/WNL/C554),
and false-positive segmentations consisted of small clusters
of incorrectly segmented pixels (results not shown).
Inspecting small clusters of false-positive pixels (the pixel-
level false-positive rate <0.01%) in a few slices (the slice-
level false-positive rate 4.7%) per head CT volume (the
patient-level false-positive rate 36.8%) puts unlikely a
strain on radiologists or clinicians. However, depending on
the intended use, the number of false-positive pixels could
be decreased with simple postprocessing steps (e.g., by
ignoring dispersed small pixel clusters) and further de-
velopment. Finally, we did not test the algorithm pro-
spectively in any emergency department setting. This is an
unfortunate but most common shortcoming in developing
medical imaging algorithms, as implementing a research
algorithm in a hospital PACS system and clinical workflow
is legally and technically a cumbersome process, which in
addition to financial resources may require close collabo-
ration with the PACS solution provider. However, the
simulated real-world validation data set with all consecu-
tive cases from 5 hospitals resembled a prospective study
setup in this context. On the other hand, the patient-level
balance between positive and negative findings varies sig-
nificantly between every hospital and institution, and
therefore, even our real-world sensitivity and specificity
figures may be imperfectly generalizable.

In conclusion, a similarly trained simple SAH algorithm
could serve as a useful tool to assist in the diagnosis of SAH
in a clinical setting. Because the presented algorithm lacks
the CE mark, the algorithm cannot yet be used for a clinical
purpose.
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